# Raku Data::Summarizers [![Build Status](https://app.travis-ci.com/antononcube/Raku-Data-Summarizers.svg?branch=main)](https://app.travis-ci.com/github/antononcube/Raku-Data-Summarizers) [![License: Artistic-2.0](https://img.shields.io/badge/License-Artistic%202.0-0298c3.svg)](https://opensource.org/licenses/Artistic-2.0) This Raku package has data summarizing functions for different data structures that are coercible to full arrays. The supported data structures (so far) are: - 1D Arrays - 1D Lists - Positional-of-hashes - Positional-of-arrays ------ ## Usage examples ### Setup Here we load the Raku modules [`Data::Generators`](https://modules.raku.org/dist/Data::Generators:cpan:ANTONOV), [`Data::Reshapers`](https://modules.raku.org/dist/Data::Reshapers:cpan:ANTONOV) and this module, [`Data::Summarizers`](https://github.com/antononcube/Raku-Data-Summarizers): ```perl6 use Data::Generators; use Data::Reshapers; use Data::Summarizers; ``` ``` # (Any) ``` ### Summarize vectors Here we generate a numerical vector, place some NaN's or Whatever's in it: ```perl6 my @vec = [^1001].roll(12); @vec = @vec.append( [NaN, Whatever, Nil]); @vec .= pick(@vec.elems); @vec ``` ``` # [740 311 434 300 (Whatever) 192 705 202 576 561 544 NaN (Any) 744 133] ``` Here we summarize the vector generated above: ```perl6 records-summary(@vec) ``` ``` # O────────────────────────────────────O # │ numerical │ # O────────────────────────────────────O # │ 1st-Qu => 251 │ # │ Max => 744 │ # │ Median => 489 │ # │ (Any-Nan-Nil-or-Whatever) => 3 │ # │ Mean => 453.5 │ # │ Min => 133 │ # │ 3rd-Qu => 640.5 │ # O────────────────────────────────────O ``` ### Summarize tabular datasets Here we generate a random tabular dataset with 16 rows and 3 columns and display it: ```perl6 srand(32); my $tbl = random-tabular-dataset(16, <Pet Ref Code>, generators=>[random-pet-name(4), -> $n { ((^20).rand xx $n).List }, random-string(6)]); to-pretty-table($tbl) ``` ``` # O────────────────O───────────O──────────O # │ Code │ Ref │ Pet │ # O────────────────O───────────O──────────O # │ A2Ue69EWAMtJCi │ 0.050176 │ Guinness │ # │ KNwmt0QmoqABwR │ 0.731900 │ Truffle │ # │ A2Ue69EWAMtJCi │ 0.739763 │ Jumba │ # │ aY │ 7.342107 │ Guinness │ # │ xgZjtSP6VrKbH │ 19.868591 │ Jumba │ # │ 20CO9FGD │ 12.956172 │ Jumba │ # │ 20CO9FGD │ 15.854088 │ Guinness │ # │ A2Ue69EWAMtJCi │ 4.774780 │ Guinness │ # │ A2Ue69EWAMtJCi │ 18.729798 │ Guinness │ # │ xgZjtSP6VrKbH │ 13.383997 │ Guinness │ # │ aY │ 9.837488 │ Jumba │ # │ 20CO9FGD │ 2.912506 │ Truffle │ # │ xgZjtSP6VrKbH │ 11.782221 │ Truffle │ # │ KNwmt0QmoqABwR │ 9.825102 │ Truffle │ # │ xgZjtSP6VrKbH │ 16.277717 │ Jumba │ # │ CQmrQcQ4YkXvaD │ 1.740695 │ Guinness │ # O────────────────O───────────O──────────O ``` **Remark:** The values of the column "Pet" is sampled from a set of four pet names, and the values of the column and "Code" is sampled from a set of 6 strings. Here we summarize the tabular dataset generated above: ```perl6 records-summary($tbl) ``` ``` # O───────────────O──────────────────────────────O─────────────────────O # │ Pet │ Ref │ Code │ # O───────────────O──────────────────────────────O─────────────────────O # │ Guinness => 7 │ Min => 0.0501758995572299 │ xgZjtSP6VrKbH => 4 │ # │ Jumba => 5 │ 1st-Qu => 2.3266005718178704 │ A2Ue69EWAMtJCi => 4 │ # │ Truffle => 4 │ Mean => 9.175443804770861 │ 20CO9FGD => 3 │ # │ │ Median => 9.831294839627123 │ KNwmt0QmoqABwR => 2 │ # │ │ 3rd-Qu => 14.619042446877677 │ aY => 2 │ # │ │ Max => 19.868590809216744 │ CQmrQcQ4YkXvaD => 1 │ # O───────────────O──────────────────────────────O─────────────────────O ``` ### Summarize collections of tabular datasets Here is a hash of tabular datasets: ```raku my %group = group-by($tbl, 'Pet'); %group.pairs.map({ say("{$_.key} =>"); say to-pretty-table($_.value) }); ``` ``` # Guinness => # O────────────────O───────────O──────────O # │ Code │ Ref │ Pet │ # O────────────────O───────────O──────────O # │ A2Ue69EWAMtJCi │ 0.050176 │ Guinness │ # │ aY │ 7.342107 │ Guinness │ # │ 20CO9FGD │ 15.854088 │ Guinness │ # │ A2Ue69EWAMtJCi │ 4.774780 │ Guinness │ # │ A2Ue69EWAMtJCi │ 18.729798 │ Guinness │ # │ xgZjtSP6VrKbH │ 13.383997 │ Guinness │ # │ CQmrQcQ4YkXvaD │ 1.740695 │ Guinness │ # O────────────────O───────────O──────────O # Truffle => # O─────────O───────────O────────────────O # │ Pet │ Ref │ Code │ # O─────────O───────────O────────────────O # │ Truffle │ 0.731900 │ KNwmt0QmoqABwR │ # │ Truffle │ 2.912506 │ 20CO9FGD │ # │ Truffle │ 11.782221 │ xgZjtSP6VrKbH │ # │ Truffle │ 9.825102 │ KNwmt0QmoqABwR │ # O─────────O───────────O────────────────O # Jumba => # O───────────O────────────────O───────O # │ Ref │ Code │ Pet │ # O───────────O────────────────O───────O # │ 0.739763 │ A2Ue69EWAMtJCi │ Jumba │ # │ 19.868591 │ xgZjtSP6VrKbH │ Jumba │ # │ 12.956172 │ 20CO9FGD │ Jumba │ # │ 9.837488 │ aY │ Jumba │ # │ 16.277717 │ xgZjtSP6VrKbH │ Jumba │ # O───────────O────────────────O───────O ``` Here is the summary of that collection of datasets: ```raku records-summary(%group) ``` ``` # summary of Guinness => # O──────────────────────────────O─────────────────────O───────────────O # │ Ref │ Code │ Pet │ # O──────────────────────────────O─────────────────────O───────────────O # │ Min => 0.0501758995572299 │ A2Ue69EWAMtJCi => 3 │ Guinness => 7 │ # │ 1st-Qu => 1.7406953436440742 │ CQmrQcQ4YkXvaD => 1 │ │ # │ Mean => 8.839377375678543 │ 20CO9FGD => 1 │ │ # │ Median => 7.34210706081909 │ xgZjtSP6VrKbH => 1 │ │ # │ 3rd-Qu => 15.854088005472917 │ aY => 1 │ │ # │ Max => 18.72979803423013 │ │ │ # O──────────────────────────────O─────────────────────O───────────────O # summary of Truffle => # O──────────────O──────────────────────────────O─────────────────────O # │ Pet │ Ref │ Code │ # O──────────────O──────────────────────────────O─────────────────────O # │ Truffle => 4 │ Min => 0.7318998724597869 │ KNwmt0QmoqABwR => 2 │ # │ │ 1st-Qu => 1.822202836225727 │ 20CO9FGD => 1 │ # │ │ Mean => 6.312932174017679 │ xgZjtSP6VrKbH => 1 │ # │ │ Median => 6.368803873269801 │ │ # │ │ 3rd-Qu => 10.803661511809633 │ │ # │ │ Max => 11.782221077071329 │ │ # O──────────────O──────────────────────────────O─────────────────────O # summary of Jumba => # O──────────────────────────────O────────────O─────────────────────O # │ Ref │ Pet │ Code │ # O──────────────────────────────O────────────O─────────────────────O # │ Min => 0.7397628145038704 │ Jumba => 5 │ xgZjtSP6VrKbH => 2 │ # │ 1st-Qu => 5.28862527360509 │ │ 20CO9FGD => 1 │ # │ Mean => 11.935946110102654 │ │ A2Ue69EWAMtJCi => 1 │ # │ Median => 12.956171789492936 │ │ aY => 1 │ # │ 3rd-Qu => 18.073154106905072 │ │ │ # │ Max => 19.868590809216744 │ │ │ # O──────────────────────────────O────────────O─────────────────────O ``` ### Skim *TBD...* ------ ## TODO - [ ] User specified `NA` marker - [ ] Tabular dataset summarization tests - [ ] Skimmer - [ ] Peek-er ------ ## References ### Functions, repositories [AAf1] Anton Antonov, [RecordsSummary](https://resources.wolframcloud.com/FunctionRepository/resources/RecordsSummary), (2019), [Wolfram Function Repository](https://resources.wolframcloud.com/FunctionRepository).