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Chapter  1 
T

Chapter 1
he R-software 

R (R development Core Team, 2007) is the open-source (read: free-of-charge) 
version of the language S. It is best known as a package that performs statistical 
analysis and graphics. However, R is so much more: it is a high-level language in 
which one can perform complex calculations, implement new methods, and make 
high-quality figures. R has high-level functions to operate on matrices, perform 
numerical integration, advanced statistics,... which are easily triggered and which 
make it ideally suited for data-visualization, statistical analysis and mathematical 
modeling.  

It is the aim of these lecture notes to make you acquainted with the R language. The 
lecture notes are based on a book (Soetaert and Herman, 2008) about ecological 
modelling in which R is extensively used for developing, applying and visualizing 
simulation models. 

There are many excellent sources for learning the R (or S) language. R comes with 
several manuals that can be consulted from the main R program (Help/Manuals). R-
intro.pdf is a good start. Many other good introductions to R are available, some 
freely on the web, and accessible via the R web site (www.r-project.org). My favorite 
is the R introduction by Petra Kuhnert and Bill Venables (2005), but beware: this 
‘introduction’ comprises more than 300 pages! 

1.1 Installing R 

R is downloadable from the following web site: http://www.r-project.org/ 

Choose the precompiled binary distribution. 

On this website, you will also find useful documentation. 

To use R for the examples in this course, several packages need to be downloaded.  
 deSolve. Performs integration. (Soetaert et al., 2008) 
 rootSolve. Finds the root of equations (Soetaert, 2008). 
 scatterplot3d. For 3-D graphics. (Ligges and Mächler, 2003) 
 seacarb. Aquatic chemistry. (Proye et al., 2007) 
 marelac. Data sets, functions and constants from the marine and 

lacustrine sciences (Soetaert and Meysman, 2008).   

If you run R within windows, downloading specific packages can best be done within 
the R program itself. Select menu item “packages / install packages”, choose a 
nearby site (e.g. France (Paris)) and select the package you need. If you install 
package “marelac” then all other packages will be automatically installed as well. 

1.2 Other useful software 

I prefer to run R from within the Tinn-R editor, which can be downloaded from 
URL http://sourceforge.net/projects/tinn-r and http://www.sciviews.org/Tinn-R. This 

http://www.r-project.org/
http://sourceforge.net/projects/tinn-r
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 it.  

editor provides R-sensitive syntax and help. Download the latest Tinn-R setup file
and install

From within the Tinn-R program, you launch R via the menu (R/start preferred Rgui). 
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Chapter  2 
Q

Chapter 2
uick overview of R 

R-code is highly readable, once you realise that:  
 “<-“ is the assignment operator.  
 everything starting with “#” is considered a comment.  
 R is case-sensitive: “a” and “A” are two different objects. 

2.1 Console versus scripts 

There are two ways in which to work with R.  

1. We can type commands into the R console window at the command prompt (>) 
and use R as a powerful scientific calculator. 

For instance, entering in the console window: 

> pi*0.795^2 ; 25*6/sqrt(67) ; log(25) 

will give as answer: 
[1] 1.985565  
[1] 18.32542 
[1] 3.218876 

Here sqrt and log are built-in functions in R; pi is a built-in constant; the semi-colon (;) 
is used to separate R-commands.  

 

In the console window, the <UP> and <DOWN> arrow keys are used to navigate 
through previously typed sentences. 

 

2. Alternatively, we can create R-scripts in an editor (e.g. Tinn-R) and save them in 
a file (“filename.R”) for later re-use. R-scripts are sequences of R-commands and 
expressions. These scripts should be submitted to R before they are executed.  

This can be done in several ways:  
 by typing, in the R-console window:  

> source ("filename.R")  

 
 by opening the file, copying the R-script to the clipboard (ctrl-C) and 

pasting it (ctrl-V) into the R-console window 
 If you do not use the tinn-R editor, the file is opened as an R-script from 

within the R console. After selecting the script, and pressing button   
the statements are executed and the cursor moved to the next line.  

 If you do use the Tinn-R editor, you can either submit the entire file 
(buttons 1,2), selected parts of the text (buttons 3,4), submit marked 
blocks (buttons 5,6) or line-by-line (last button). 
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Throughout these notes, the following convention is used: 

> 3/2 

denotes input to the console window (“>” is the prompt) 
[1] 1 

is R output, as written in the console window 

 getwd() 

is an R statement in a script file (it lacks the prompt). 

 

A screen capture of a typical Tinn-R session, with the Tinn-R editor (upper window) 
and the R-console (lower window) is given below.  A script file is opened in the Tinn-
R editor – note the context-sensitive syntax (green=comments, blue= reserved 
words, rose = R-parameters). Several lines of R-code have been selected (blue area) 
and sent to the R-console, which has produced the graphics window that floats 
independently from the other windows. 

 
 

2.2 Getting help, examples, demonstrations 

R has an extensive help facility. Apart from the Help window launched from the Help 
menu, or the HTML help facility, it is also available from the command line prompt.  

For instance, typing 

> ?log 
> ?sin 
> ?sqrt 
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> ?round 
> ?Special 

will explain about logarithms and exponential functions, trigonometric functions, and 
other functions. 

> ?Arithmetic 

lists the arithmetic operations in R. 

> help.search(“factor”) 

will list occurrences of the word <factor> in R-commands. 

Sometimes the best help is provided by the very active mailing list. If you have a 
specific problem, just type R: <problem> on your search engine. Chances are that 
someone encountered the problem and it was already solved. 

 

Most of the help files also include examples. You can run all of them by using R-
statement “example" 

For instance, typing into the console window: 

> example(matrix) 

will run all the examples from the matrix help file.  

 

> example(pairs) 

will run all the examples from the pairs help file.  

(– try this ! – pairs is a very powerful way of visualizing pair-wise relationships). 

 

Alternatively, you may select one example, copy it to the clipboard (ctrl-C for  
windows users) and then paste it (ctrl-V) in the console window. 

In addition, the R main software and many R-packages come with demonstration 
material. Typing 

> demo() 

will give a list of available demonstrations in the main software. 

> demo(graphics) 

will demonstrate some simple graphical capabilities. 

2.3 Small things to remember 

1. Pathnames in R are written with forward slashes ”/” , although in windows (®), 
backslashes, “\”, are used. Thus, to set a working directory in R: 

setwd("C:/R code/")  

 

2. If a sentence on one line is syntaxically correct, R will execute it, even if it is 
the intention that it proceeds on the next line. For instance if we write:  
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A <- 3 + cos(pi) 
    - sqrt(5) 
[1] -2.236068 

then A will get the value (3-cos(pi)) and R will print the value of (–sqrt(5)).  

In contrast, in the next lines: 

3 + cos(pi) –  
    sqrt(5) 
[1] -0.236068 

R will print the value of 3+cos(pi)-sqrt(5): as the sentence on the first line was not 
syntaxically finished, R has (correctly) assumed that it continued on the next line.  

Be careful if you want to split a complex statement over several lines ! These errors 
are very difficult to trace, so it is best to avoid them. 

2.4 Exercises – Using R as a calculator 

It is very convenient to use R as a powerful calculator. This can best be done from 
within the R-console. 

1. Use the console to calculate the value of: 
 (4/6*8-1)2/3 
 ln(20) 
 log2(4096) 
 2*π*3 
 e2+cosine(0.5*π)  

 )8/  cos(*4.5*3.2*24.53.2 22 π−+

tip: you may need to look at the help files for some of these functions. typing ?"+"  
will open a help file with the common arithmetic operators. 

2. Now write the R-statements in a script file, using the Tinn-R editor. Try the various 
ways in which to submit the statements to R. 



Using R for scientific computing   

 

8 

 

Chapter  3 
C

Chapter 3
omputing with R variables 

3.1 Numbers, vectors, matrices and arrays 

3.1.1 Assignment 

When variables are used, they need to be initialised with numbers. 

> A <- 1 
> B <- 2 
> A+B 
[1] 3 

R can take as arguments for its functions single numbers, vectors, matrices, or 
arrays.  

> V<-factorial(10) 

Calculates 10! (=1*2*3*4*5*…*10). The operator ‘<-‘ assigns the result of this 
calculation to variable V. V can then be used in subsequent calculations: 

> V/10 
[1] 362880 

Note that the assignment of a value to V does not display it on the window. To 
display V we simply write: 

> V 
[1] 3628800 

Alternatively, we may assign the result of calculations to a variable AND view the 
results, by embracing the statement between brackets: 

> (X <- sin(3/2*pi) ) 
[1] -1 

Apart from integers, real and complex numbers, R also recognizes infinity (Inf) and 
Not a Number (NaN). Try: 

> 1/0 
> 0/0 
> 1e-8 * 1000 

 (where the “e-8” notation denotes 10-8). 

 

3.1.2 Vectors 

Vectors consist of an ordered collection of numbers and can be created in many 
ways:  

 Using R-function “vector”  
 The function “c()” combines numbers into a vector 1 

                                                      
1 This is perhaps the most important function in R 
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 The operator “:” creates a sequence of values, each 1 larger (or smaller) 
than the previous one  

 A more general sequence can be generated by R-function “seq”  
 The same quantity is repeated using R-function “rep” 
 … 

For instance, the commands: 

> c(0, pi/2, pi, 3*pi/2, 2*pi)  
[1] 0.000000 1.570796 3.141593 4.712389 6.283185 

> seq(from=0,to=2*pi, by=pi/2 ) 
[1] 0.000000 1.570796 3.141593 4.712389 6.283185 

> seq(0, 2*pi, pi/2 ) 
[1] 0.000000 1.570796 3.141593 4.712389 6.283185 

will all create a vector, consisting of: 0, π,… 2*π.  

Note that R-function “seq” takes as input (amongst others) parameters ‘from’, ‘to’ 
and ‘by’ (2nd example). If the order is kept, they need not to be specified by name 
(3rd example). 

 

The next command calculates the sine of this vector and outputs the result: 

> sin( seq(0, 2*pi, pi/2 ))  
[1]0.00000e+00 1.00000e+00 1.224606e-16 -1.00000e+00 -2.449213e-16 

 

Function “rep” is used to repeat elements:  

> rep(1,times=5) 
[1] 1 1 1 1 1  

> rep(c(1,2),times=5) 
 [1] 1 2 1 2 1 2 1 2 1 2 

> c(rep(1,5),rep(2,5)) 
 [1] 1 1 1 1 1 2 2 2 2 2 

 

The next statements: 

> V <- 1:100 
> sqrt(V) 
[1]  1.000000  1.414214  1.732051  2.000000  2.236068  2.449490  
… 

create a sequence of integers between 1 and 100 and take the square root of all of 
them, displaying the result to the screen.  

The operator ‘<-‘ assigns the sequence to V.  

Some other examples of the “:” operator are: 

> (V <- 0.5:10.5) 
[1]  0.5  1.5  2.5  3.5  4.5  5.5  6.5  7.5  8.5  9.5 10.5 

> 6:1 
[1] 6 5 4 3 2 1 
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Finally, the statements: 

> V <- vector(length=10) 
> FF<- vector() 

generate a vector V comprising 10 elements, and a vector FF of unknown length.  

Note: a peculiar feature of R is that the elements of a vector can also be given 
names: 

> (fruit <- c(banana=1, apple=2, orange =3)) 
banana  apple orange  
     1      2      3 

> names(fruit) 
[1] "banana" "apple"  "orange" 

 

3.1.3 Matrices 

Matrices can also be created in several ways:  
 By means of R-function “matrix”  
 By means of R-function “diag” which constructs a diagonal matrix 
 The functions “cbind“ and “rbind“ add columns and rows to an existing 

matrix, or to another vector 

 

The statement: 

> A <-matrix(nrow=2,data=c(1,2,3,4))  

creates a matrix A, with two rows, and, as there are four elements, two columns. 
Note that the data are inputted as a vector (using the c() function). 

The next two statements display the matrix followed by the square root of its 
elements: 

> A 
     [,1] [,2] 
[1,]    1    3 
[2,]    2    4 

> sqrt(A) 
         [,1]     [,2] 
[1,] 1.000000 1.732051 
[2,] 1.414214 2.000000 

 

By default, R fills a matrix column-wise (see the example above). However, this can 
easily be overruled, using parameter byrow: 

> (M <-matrix(nrow=4, ncol=3, byrow=TRUE, data=1:12)) 
     [,1] [,2] [,3] 
[1,]    1    2    3 
[2,]    4    5    6 
[3,]    7    8    9 
[4,]   10   11   12 

 

The unity matrix (I) is created using R-function diag: 
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> diag(1,nrow=2) 
     [,1] [,2] 
[1,]    1    0 
[2,]    0    1 

 

The names of columns and rows are set as follows: 

> rownames(A) <- c(”x”,”y”) 
> colnames(A) <- c(”c”,”b”) 
> A 
  c b 
x 1 3 
y 2 4 

note that we use the “c()” function here ! Row names and column names are in fact 
vectors containing strings. 

 

Matrices can also be created by combining (binding) vectors, e.g. rowwise: 

> V <- 0.5:5.5 
> rbind(V,sqrt(V)) 
       [,1]     [,2]     [,3]     [,4]     [,5]     [,6] 
V 0.5000000 1.500000 2.500000 3.500000 4.500000 5.500000 
  0.7071068 1.224745 1.581139 1.870829 2.121320 2.345208 

 

t(A) will transpose matrix A (interchange rows and columns). 

> t(A)  
  x y 
c 1 2 
b 3 4 

 

3.1.4 Arrays 

Arrays are multidimensional generalizations of matrices; matrices and arrays in R 
are actually vectors with a dimension attribute.  

A multi-dimensional array is created as follows:  

> AR <-array(dim=c(2,3,2),data=1)  

In this case AR is a 2*3*2 array, and its elements are all 1. 

3.2 Dimensions 

The commands  

> length(V) 
> dim(A) 
> ncol(M) 
> nrow(M) 

Will return the length (total number of elements) of (vector or matrix) V, the 
dimension of matrix or array A, and the number of columns and rows of matrix M 
respectively. 
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3.3 Selecting and extracting elements 

To select subsets of vectors or matrices, we can either 
 specify the numbers of the elements that we want (simple indexing) 
 specify a vector of logical values (TRUE/FALSE) to indicate which 

elements to include (TRUE) and which not to include (FALSE). This uses 
logical expressions 

3.3.1 Simple indexing 

The elements of vectors, matrices and arrays are indexed using the “[]“ operator:  

M[1 , 1] 
M[1 , 1:2] 
M[1:3 , c(2,4)] 

Takes the element on the first row, first column of a matrix M (1st line), then selects 
the entries in the first row and first two columns (2nd line) and then the elements on 
the first three rows, and 2nd and 4th column of matrix M (3rd line).  

If an index is omitted, then all the rows (1st index omitted) or columns (2nd index 
omitted) are selected. In the following: 

M[   ,2] <-0 
M[1:3, ] <- M[1:3, ] * 2 

first all the elements on the 2nd column (1st line) of M are zeroed and then the 
elements on the first three rows of M multiplied with 2 (2nd line).  

Similar selection methods apply to vectors: 

V[1:10]  
V[seq(from=1,to=5,by=2)] 

The statement on the 1st line takes the first 10 elements of vector V, whilst on the 2nd 
line, the 1st, 3rd and 5th element of vector V are selected.  

3.3.2 Logical expressions 

Logical expressions are often used to select elements from vectors and matrices that 
obey certain criteria. 

R distinguishes logical variables TRUE and FALSE, represented by the integers 1 
and 0. 

> ?Comparison 
> ?Logic 

will list the relational and logic operators available in R.  

The following will return TRUE for values of sequence V that are positive: 

> (V <- seq(-2,2,0.5)) 
[1] -2.0 -1.5 -1.0 -0.5  0.0  0.5  1.0  1.5  2.0 

> V>0 
[1] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE 

while 

> V [V > 0] 
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[1] 0.5 1.0 1.5 2.0 

will select the positive values from V,  

> V [V > 0] <- 0 

will zero all positive elements in V,  

> sum(V < 0) 
[1] 4 

will return the number of negative elements: it sums the TRUE (=1) values, and 

> V [V != 0] 
[1] -2.0 -1.5 -1.0 -0.5  0.5  1.0  1.5  2.0 

will display all nonzero elements from V ( “!” is the “not” operator). 

Logical tests can also be combined, using “|”  (the “or” operator), and  “&” (“and”). 

> V [V<(-1) | V>1] 
[1] -2.0 -1.5  1.5  2.0 

will display all values from V that are < -1 and > 1. Note that we have enclosed “-1” 
between brackets (can you see why this is necessary?) 

Finally, 

> which (V == 0) 
[1] 5 

> which.min (V) 
[1] 1 

will return the element index of the 0-value, and of the minimum.  

3.4 Removing elements  

When the index is preceded by a “-“, the element is removed.  

M[ ,-1] 

Will show the contents of matrix M, except the first column. 

 

x <- x[-1]  
M <- M[-1, ] 
V <- V[-V>=0] 

will delete the 1st element of x, (1st line),  the 1st row of M (2nd line), and the positive 
elements of V (3rd line). 

For more information, type  

> ?Extract  

3.5 More complex data structures   

R also allows creating more complex structures such as data frames and lists. 

3.5.1 lists 

A list is a combination of several objects; each object can be of different length: 
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> list(Array = AR, Matrix = M) 

will combine the previously defined array AR and matrix M.  

3.5.2 data.frames 

These are combinations of different data types (e.g. characters, integers, logicals, 
reals), arranged in tabular format: 

 

> genus <- c("Sabatieria","Molgolaimus") 
> dens  <- c(1,2) 
> Nematode <-data.frame(genus=genus,density=dens) 
> Nematode 

 
        genus density 
1  Sabatieria       1 
2 Molgolaimus       2 

In the example above, the data.frame “Nematode” contains two columns, one with 
strings (the genus name), one with values (the densities).  

Data.frames are in fact special cases of lists, consisting of vectors with equal length.  

Many matrix-operations work on data.frames with a single data type, but there exist 
also special operations on data.frames. 

 

3.5.3 Selecting data from data.frames and lists 

Data.frames and lists can be accessed by their names, or by the “[ ]“ or 
“[[ ]]“ operator. The object resulting from a selection using single brackets [ ], will be 
a data.frame respectively a list itself; with double brackets [[ ]], one obtains a vector 
(data.frames) or a variable data-type (lists).  

 

For instance: 

> Nematode$density/sum(Nematode$density) 
 [1] 0.3333333 0.6666667 

will divide all density values (1,2) by the summed density.  

> mean(Nematode[,2]) 

will calculate the mean of Nematode density (the 2nd column). 

Try: 

> Nematode$genus 
> Nematode[1] 
> Nematode[[1]]  

These statements will all output the two genus names, but in a different format.  

 

> ?Extract 

also explains the various ways in which to extract elements from lists and data 
frames. 
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3.6 Data Conversion  

Conversion from one type of data structures to another can easily be done, e.g. by: 

> as.data.frame(M) 
> as.vector(A) 

If unsure about the type, you can write: 

> is.data.frame(M) 
> is.vector(A) 

Or you can display the data type by: 

> class(M) 

3.7 Data import from external sources 

In all previous examples, data was entered from the console (or from a script file).  

There are ample facilities to import data from external sources. Most often, we will 
use functions read.table, read.csv, or read.delim to read matrices or data frames 
written in tabular form as text files. 

R also has plenty of built-in data sets. They are listed by: 

> data() 

3.8 Exercises 

Creating and manipulating matrices and vectors is essential if we want to use R as a 
mathematical tool.  

Although this has been implemented in a consistent way in R, it is not simple for 
novice users! Practice is the best teacher, so you will get plenty of exercise. 

Most of the exercises can be answered with one single R-statement. However, as 
these statement smay be quite complicated, it is often simpler to first break them up 
into smaller parts, after which they are merged into one.  

3.8.1 Vectors, sequences. 
 Use R-function “mean” to estimate the mean of two numbers, 9 and 17. 

(you may notice that this is not as simple as you might think!). 

Vector V 
 Create a vector, called V, with even numbers, between 16 and 56. Do not 

use loops. (tip: use R-function  “seq” ) 
 Display this vector  
 What is the sum of all elements of V? Do not use loops – there exists an 

R-function that does this – the name of this function is trivial.  
 Display the first 4 elements of V 
 Calculate the product of the first 4 elements of V 
 Display the 4th, 9th and 11th element of V . (tip: use the “c()” function). 

Vector W 
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 Create a new vector, W, which equals vector V, multiplied with 3; display 
its content.  

 How many elements of W are smaller than 100?  
First create a new vector that contains only the elements from W<100 
(call it W100), then calculate the length of this new vector.  

 Now perform the same calculation, in one R statement.  
 Create a sequence that contains the values (1,1/2,1/3,1/4,…,1/10) 
 Compute the square root of each element 
 Compute the square (2) of each element  
 Create a sequence with values (0/1,1/2,2/3,3/4,…,9/10) 

Vector U 
 Create a vector, U, with 100 random numbers, uniformly distributed 

between -1 and 1. tip: R-statement “runif” generates uniformly 
distributed random numbers; use ?runif to see how it works. 

 Check the range of U; all values should be within -1 and +1. 
tip: there exists an R-function to do that-its name is trivial. 

 Calculate the sum and the product of the elements of U 
 How many elements of U are positive? 
 Zero all negative values of U.  
 Sort U 

Vectors x, y 
 Create two vectors: vector x, with the elements: 2,9,0,2,7,4,0 and vector 

y with the elements 3,5,0,2,5,4,6 (in that order). (tip: use the c() function). 
 Divide all the elements of y by the elements of x. 
 Type in the following commands; try to understand: 

o x>y 
o x==0 

 Select all values of y that are larger than the corresponding values of x 
 Select all values of y for which the corresponding values of x are 0. 
 Remove all values of y for which the corresponding values of x equal 0.  
 Zero all elements of x that are larger or equal than 7. Show x. 

3.8.2 Matrices 
 Use R-function “matrix” to create a matrix with the following contents: 

⎦47  
⎥
⎤

⎢
⎣

⎡ 93

⎥
⎥
⎥
⎤

⎢
⎢
⎡

91/
6/15/14/1
3/12/11

 display it to the screen 
 Use R-function “matrix” to create a matrix called “A”: 

⎦/8
 

⎢⎣ 17/1

 Take the transpose of A.  
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 Create a new matrix, B, by extracting the first two rows and first two 
columns of A. Display it to the screen. 

 Use “diag” to create the following matrix, called “D”: 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

300
020
001

 Use “cbind” and “rbind” to augment this matrix, such that you obtain: 

 
It is simplest to do this in two statements (but it can be done in one!) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

5555
4300
4020
4001

 Remove the second row and second column of the previous matrix 
 

3.8.3 Diversity of deep-sea nematodes 

We will now work on a data set consisting of nematode species densities, found in 
Mediterranean deep-sea sediments, at depths ranging from 160 m to 1220 m. The 
densities are expressed in number of individuals per 10 cm2. Nematodes are small 
(<1mm) worms, and they are generally very abundant in all marine sediments.  

The data (from Soetaert et al., 1991), originally present in an ACCESS database, 
have been exported as a table in a comma-separated-values (so-called csv) format. 
This format has the advantage that it can easily be read by text editors (such as the 
TINN-R editor) as well as in spreadsheet programs.  

Open the file “nemaspec.csv” in Tinn-R2. Check its structure. You may also open the 
file in EXCEL, but do not forget to close it before proceeding. EXCEL is very 
territorial, and will not allow another program, such as R, to access a file that is open 
in EXCEL. 

On the first line is the heading (the names of the stations), the first column contains 
the species names. 

Before importing the file in R, check the working directory: 

> getwd() 

If the file called “nemaspec.csv” is not in this directory, you may need to change the 
working directory: 

> setwd(“directory name”) 

(do not forget that R requires “/” where windows uses “\”) . 

 

                                                      
2 Note: if you do not have this file, it can be found in the “marelac” package directory. 
Within R, type:  
browseURL(paste(system.file(package="marelac"), "/lecture/", 
sep="")) 
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Make a script file in which you write the next steps; submit each line to R to check its 
correctness.  

Read the comma-delimited file, using R-command “read.csv”. Type ?read.csv for 
help. Specify that the first row is the heading (header=TRUE) and the first column 
contains the rownames (row.names=1). Put the data in data.frame Nemaspec.  

Nemaspec <- read.csv(“nemaspec.csv”, header=TRUE, row.names=1) 

Check the contents of Nemaspec. As the dataset is quite substantial, it is best to 
output only the first part of the data: 

head(Nemaspec) 

 

The rest is up to you: 
 Select the data from station M160b (the 2nd column of Nemaspec); put 

these data in a vector called “dens”.  
(remember: to select a complete column, you select all rows by leaving 
the first index blanc). 

 Remove from vector dens, the densities that are 0. Display this vector on 
the screen.    (Answer: [1]  6.580261  5.919719   etc…) 

 Calculate N, the total nematode density of this station. The total density is 
simply the sum of all species densities (i.e. the sum of values in vector 
dens). What is the value of N ?     (Answer :699). 

 Divide the values in vector dens by the total nematode density N. Put the 
results in vector p, which now contains the relative proportions for all 
species. The sum of all values in p should now equal 1. Check that.  

 Calculate S, the number of species: this is simply the length of p; call this 
value S.          (Answer: S=126) 

 Estimate the values of diversity indices N1 and N2 and Ni, given by the 
following formulae: 

                                                  ( )/ i
 

 
You can calculate each of these values using only one R statement ! 
(A: 90.15358, 66.77841, 22.56157) 

)max(/1 ipNi =
12
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 The 126 nematode species per 10 cm2 were obtained by looking at all 
699 individuals. Of course, the fewer individuals are determined to 
species, the fewer species will be encountered. Some researchers 
determine 100 individuals, other 200 individuals. To standardize their 
results, the expected number of species in a sample can be recalculated 
based on a common number of individuals. 
The expected number of species in a sample with size n, drawn from a 
population which size N, which has S species is given by: 
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⎦n  
where Ni is the number of individuals in the ith species in the full sample 

and ( )N
n  is the so-called ‘binomial coefficient’, the number of different 
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sets with size n that can be chosen from a set with total size N.  
In R, binomial coefficients are estimated with statement “choose(N,n)”.  
What is the expected number of species per 100 individuals ? 
(n=100,N=699).    (A: ES(100) = 60.68971). 

 Print all diversity indices to the screen, which should look like: 
 

        N        N0        N1        N2        Ni       ESS  
699.00000 126.00000  90.15358  66.77841  22.56157  60.68971  
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Chapter  4 
U

Chapter 4
ser-defined functions  

4.1 Function definition 

One of the strengths of R is that one can make user-defined functions that add to R-
s built-in functions.  

Typically, complex functions are written in R-script files, which are then submitted to 
R (see above). For instance,  

Circlesurface <- function (radius) pi*radius^2 

defines a function (called “Circlesurface”)  which takes as input argument a variable 
called “radius” and which returns the value pi*radius2 (which is the surface of a 
circle).  

After submitting this function to R, we can use it to calculate the surfaces of circles 
with given radius: 

>Circlesurface(10) 
[1] 314.1593 

or 

>Circlesurface(1:100) 
  [1]     3.141593    12.566371    28.274334    50.265482  … 

which will calculate the surface of circles with radiuses 1, 2, …,100.   

 

More complicated functions may return more than one element: 

Sphere <- function(radius) 
{ 
 volume  <- 4/3*pi*radius^3 
 surface <- 4 *pi*radius^2 
 return(list(volume=volume,surface=surface)) 
} 

Here we recognize  

• the function heading (1st line), specifying the name of the function (Sphere) 
and the input parameter (radius) 

• the function specification. As the function comprises multiple statements, the 
function specification is embraced by curly braces “{…}”. 

• The return values (last line). Sphere will return the volume and surface of a 
sphere, as a list.  

The earth has approximate radius 6371 km, so its volume (km3) and surface (km2) 
are: 

>Sphere(6371) 
$volume 
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[1] 1.083207e+12 
$surface 
[1] 510064472 

the next statement will only display the volume of spheres with radius 1, 2, …5 

>Sphere(1:5)$volume 
[1]   4.18879  33.51032 113.09734 268.08257 523.59878 

Sometimes it is convenient to provide default values for the input parameters.  

For instance, the next function estimates the density of “standard mean ocean water” 
(in kg m-3), as a function of temperature, T, (and for salinity=0, pressure = 1 atm) 
(Millero and Poisson, 1981); the input parameter T is by default equal to 20 °C: 

Rho_W <- function(T=20) 
{ 
999.842594 + 0.06793952 * T - 0.00909529 * T^2 +  
0.0001001685 * T^3 - 1.120083e-06 * T^4 + 6.536332e-09 * T^5 
} 

By ending the first sentence with a “+” we made clear that the statement is not 
finished and continues on the next line. It would have been wrong to put the “+” on 
the next line. (see chapter 2) 

Calling the function without specifying temperature, uses the default value: 

>Rho_W() 
[1] 998.2063 

>Rho_W(20) 
[1] 998.2063 

>Rho_W(0) 
[1] 999.8426 

4.2 Programming 

R has all the features of a high-level programming language: 

4.2.1 If, else, ifelse constructs 

Try to understand the following: 

Dummy <- function (x) 
{ 
if ( x<0  ) string <- ‘x<0’     else 
if ( x<2  ) string <- ‘0>=x<2’  else 
            string <- ‘x>=2’ 
print(string) 
} 

> Dummy(-1) 
[1] "x<0" 

> Dummy(1) 
[1] "0>=x<2" 

> Dummy(2) 
[1] "x>=2" 

Note that we have specified the “else” clause on the same line as the “if” part so that 
R knows that the statement is continued on the next line! 
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If and else constructs involving only one statement can be combined: 

> x<-2 
> ifelse (x>0, "positive", "negative,0") 
[1] "positive" 

4.2.2 Loops 

Loops allow a set of statements to be executed multiple times: 

The “for” loop iterates over a specified set of values. In the example below, the 
variable “i" takes on the values (1,2,3): 

> for (i in 1:3) print(c(i,2*i,3*i))  
[1] 1 2 3 
[1] 2 4 6 
[1] 3 6 9 

 

“while” and “repeat” will execute until a specified condition is met.  

i<-1 ; while(i<11) {print(i); i<-i+1} 

 

“break” exits the loop 

“next” stops the current iteration and advances to the next iteration.  

i<-1 
repeat  
{ 
  print(i) 
  i <-i+1 
  if(i>10) break 
} 

 

The curly braces “{…}” embrace multiple statements that are executed in each 
iteration. 

Note: loops are implemented very inefficiently in R and should be avoided as often 
as possible. Fortunately, R offers many high-level commands that operate on 
vectors and matrices. These should be used as much as possible! 

For more information about if constructs and loops, type 

> ?Control 

4.3 R- packages 

A package in R is a file containing many functions that perform certain related tasks. 
Packages can be downloaded from the R website (see chapter 1.2).  

Once installed, we generate a list of all available packages, we load a package and 
we obtain a list with its contents by the following commands: 

>library() 
>library(deSolve) 
>library(help=deSolve) 
>help(package=deSolve) 
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4.4 Exercises 

4.4.1 R-function sphere 

Extend the “Sphere” function with the circumference of the sphere at the place of 
maximal radius. The formula for estimating the circumference of a circle with radius r 
is: 2.π.r. 

What is the circumference of the earth near the equator? 

 

4.4.2 An R-function to estimate saturated oxygen concentrations 

The saturated oxygen concentration in water (µmol kg-1), as function of temperature 
(T), and salinity (S) can be calculated by: 

SatOx = eA       where : 

A= -173.9894 + 25559.07/T + 146.4813* loge(T/100) -22.204*T/100 + S *  

(-0.037362+0.016504*T/100-0.0020564 *T/100*T/100) 

and T is temperature in Kelvin (Tkelvin = Tcelsius+273.15). 

Tasks: 
 Make a function that implements this formula; the default values for 

temperature and salinity are 20°C and 35 respectively.  
 What is the saturated oxygen concentration at the default conditions? (A: 

225.2346) 
 Estimate the saturated oxygen concentration for a range of temperatures 

from 0 to 30°C, and salinity 35. (Tip: no need to use loops).            

                                                            

4.4.3 Loops 

The Fibonacci numbers are calculated by the following relation: Fn=Fn-1+Fn-2 

With F1= F2 =1 

Tasks: 
 Compute the first 50 Fibonacci numbers; store the results in a vector (use 

R-command “vector” to create it). You have to use a loop here 

 For large n, the ratio Fn/Fn-1 approaches the “golden mean”: 2/)( +  51
 What is the value of F50/F49; is it equal to the golden mean? 
 When is n large enough? (i.e. sufficiently close (<1e-6) to the golden 

mean)  

 

4.4.4 Diversity of deep-sea nematodes – all stations 
 Starting from your code to estimate diversity indices for deepsea station 

M160b, now write a loop that does so for all the stations in Nemaspec.  
 First create a matrix called div, with the number of rows equal to the 

number of deepsea stations, and with 6 columns, one for each diversity 
index. This matrix will contain the diversity values. 
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 The column names of div are: ”N”, ”N0”, ”N1”, ”N2”, ”Ninf”, ”ESS”.  
The row names of matrix div are the station names (= the column names 
of Nemaspec). Tip: Use R-command colnames(), rownames()  

 Now loop over all columns of data frame Nemaspec, estimate the 
diversity indices and put the results in the correct row of matrix div: 

for (i in 1:ncol(Nemaspec))  
 { 
   # you have to write this part of the code 
 } 

 Show matrix div to the screen 

 

4.4.5 Diversity indices – a function 
 Based on the results obtained in 4.4.4, make a function that will calculate 

the diversity indices for any data matrix.  

 

4.4.6 Rarefaction diversity (3) 

If you still have time and the courage: try an alternative way of estimating the 
number of species per 100 individuals by taking random ‘subsamples’ of 100 
individuals and estimating the number of species from this subsample.  

If the procedure is repeated often enough, the mean value should converge to the 
expected number of species, ESS(100) – this is the rarefaction method of Sanders 
(1968).  

You may need the following new R-functions:  
 round (converting reals to integers),  
 cumsum (take a cumulative sum),  
 sample (take random selection of elements),  
 table (to make a table of counts),  

as well as length, mean.  

 
Hurlbert (1971) showed that rarefaction generally overestimates the true estimated 
number of species – can you corroborate this finding? 

 

 

                                                      
3 This question requires significant thought and imagination; there are several ways 
to do this. 
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Chapter  5 
S

Chapter 5
tatistics 

R originated as a statistical package, and it is still predominantly used for this 
purpose. You can do virtually any statistical analysis in R. As there exist many 
documents that may help you with statistical analyses in R, we will not deal with the 
subject here.  

We just use statistics to show you how to use efficiently use R, in cases where you 
have no clue where to begin! 

5.1 Using R in four steps  

Suppose you want to perform a hierarchic clustering and plot the dendrogram of a 
multivariate data set. 

If you have never done that in R here are the steps: 

1. Find a function that performs the requested task. 
for instance, use help.search (“cluster”) to help you. Depending on the 
number of packages that you have installed, R will list a number of possible 
functions whose help file contains the word “cluster” – use the function from the 
package stats (part of the core of R).  

2. Open the help file (?<name-of-the-function>) and look up the syntax for 
this function. If you have no time to read it completely, at least read (part of) 
the section “Description”, “Usage”, and “Examples”. 

3. Try the examples in the help file. You may: 
 Try them all at once (example(<name-of-the-function>). 
 Alternatively, you may select the statements in the Examples section that 

look applicable to your problem, copy-paste them into your script file 
(Ctrl-C / Ctrl-V) and execute them – e.g. line by line. Chances are real 
that, if they are suited for your case, you will transform them anyway.  

4. Transform a promising example so that it suits your problem. 

 

5.2 Exercise: multivariate statistics on the nematode 
species data. 

Use R to perform a multivariate statistical analysis of the nematode data. Beware: 
the nematode data have stations as columns and species as rows. 

 Perform a hierarchic clustering and plot the dendrogram 
 Perform a principal component analysis (PCA) and plot the results – you 

may also repeat the PCA analysis, with the first two stations removed! 
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Chapter  6 
G

Chapter 6
raphics 

R has extensive graphical capabilities. Try: 

>demo(graphics) 
>demo(image) 
>demo(persp) 

to obtain a display of R’s simple (1-D, x-y), image-like (2-D) and perspective (3-D) 
capabilities. 

6.1 Basics 

Graphics are plotted in the figure window which floats independently from the other 
windows. If not already present, it is launched by writing: 

windows() 

plot region

margin 1

2

3

4 A figure consists of a plot region surrounded by 4 margins, which are numbered 
clockwise, from 1 to 4, starting from the bottom. 

R distinguishes between: 

1. high-level commands. By default, these create a new figure, e.g.  
 hist, barplot, pie, boxplot, …  (1-D plot) 
 plot, curve, matplot, pairs,…   ((x-y)plots) 
 image, contour, filled.contour,...  (2-D surface plots) 
 persp, scatterplot3d(4)   (3-D plots)  

 

2. low-level commands that add new objects to an existing figure, e.g.  
 lines, points, segments, polygon, rect, text, arrows, legend, abline, 

locator, rug, ...   
These add objects within the plot region 

 box, axis, mtext (text in margin), title, …  
which add objects in the plot margin 

 

3. graphical parameters that control the appearance of.  
 plotting objects:  

cex (size of text and symbols), col (colors), font, las (axis label 
orientation), lty (line type), lwd (line width), pch (the type of points),… 

 graphic window: 
mar (the size of the margins), mfrow (the number of figures on a row), 
mfcol(number figures on a column),… 

 

                                                      
4 scatterplot3d is in R-package “scatterplot3d” which has to be loaded first. 
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> ?plot.default 
> ?par 
> ?plot.window 
> ?points 

will open the help files, while 

> example(plot.default) 
> example(points) 

will run the examples, displaying each new graph, after you have pressed 
“<ENTER>” (try it!) 

6.2 X-Y plots 

A circle can be plotted by (x,y) points, where x= r*cos(α)  and y= r*sin(α) ,  
with α the angle, from 0 to 2π, and r the radius.  

In the following script, we first generate a sequence of angle values, a, from 0 to 2 π, 
comprising 100 values (length.out) and then plot a circle with unit radius: 

a <- seq(0,2*pi, length.out=100) 
plot(x=cos(a),y=sin(a)) 

As “plot” is a high-level command, it starts a new figure. 

 

By default, R adds axes, and labels, and represents the (x,y) data as small dots 
(points). Note that the graph is not symmetrical. 

 

We will now make a more complex figure that resembles a “target face”, e.g. for 
practicing archery or to throw darts. 

We first use the same command (“plot”) as above, but we add a number of 
graphical parameters that specify that: 
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 Rather than dots, the points should be connected by lines (type).  
 The line should twice as wide as the default (lwd) 
 The x- and y-axes labels (xlab,ylab) have to be empty 
 The axes and axes annotations (axes) are removed 
 The graph has to be symmetrical, i.e. the x/y aspect ratio = 1 (asp). 

plot(cos(a),sin(a),type=”l”,lwd=2,xlab=””,ylab=””,axes=FALSE,  
     asp=1) 

 

To this figure, we can now add several low-level objects: 
 a series of lines, representing smaller and smaller circles (lines).  

for (i in seq( 0.1,0.9,by=0.1)) lines(i*sin(a), i*cos(a)) 

 
 an innermost red polygon (polygon). 

polygon(sin(a)*0.1,cos(a)*0.1,col="red") 
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 point marks as text labels, ranging from from 10 to 1  (text). The closer 
to the centre, the higher the score  

for (i in 1:10) text(x=0,y=i/10-0.025,labels=11-i,font=2) 

 

10
9
8
7
6
5
4
3
2
1 A

B

 
Now two archers take 10 shots at the target face’. We mimic their arrows by 
generating normally distributed (x,y) numbers, with mean=0 (the centre!) and where 
the experience of the archer is mimicked by the standard deviation. The more 
experienced, the closer the arrows will be to the centre, i.e. the lower the standard 
deviation.  

 R-statement rnorm generates normally distributed numbers; we need 20 
of them, arranged as a matrix with 2 columns. 

shots1 <- matrix(ncol=2, data=rnorm(n=20,sd=0.2)) 
shots2 <- matrix(ncol=2, data=rnorm(n=20,sd=0.5)) 

 
 The shots are added to the plot as points, colored darkblue 

(experienced archer) and darkgreen (beginners level). Note that we 
choose a 50% enlarged point size (cex), and we choose a circular 
shaped point (pch=16) 

points(shots1,col="darkblue",pch=16,cex=1.5) 
points(shots2,col="darkgreen",pch=16,cex=1.5) 

 
 Finally, we add a legend, explaining who has done the shooting: 

legend("topright",legend=c(“A”,”B”),pch=16, 
        col=c("darkblue","darkgreen"),pt.cex=1.5) 

Note that the legend text and the colors are inputted as a vector of strings, using the 
“c()” function (e.g. c(“A”, “B”)). 

6.3 X-Y plots – conditional plotting 

As a more sophisticated demonstration of the use of symbols in R-graphs, we work 
on a biological example, from the R data set called “Orange”.  
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This data set contains the circumference (in mm, at breast height) measured at 
different ages for five orange trees. We start by looking at the data (only part is 
displayed). 

>Orange 
  Tree  age circumference 
1    1  118            30 
2    1  484            58 
… 
8    2  118            33 
9    2  484            69 
… 
34   5 1372           174 
35   5 1582           177 

 

and make a rough plot of circumference versus age: 

plot(Orange$age, Orange$circumference,xlab=”age, 
days”,ylab=”circumference, mm”, main= “Orange tree growth”) 

(as Orange is a data.frame, columns can be addressed by their names, Orange$age 
and Orange$circumference).  

 

The output (figure below, left) shows that there is a lot of scatter, which is due to the 
fact that the five trees did not grow at the same rate.  

It is instructive to plot the relationship between circumference and age differently for 
each tree. In R, this is simple: we can make some graphical parameters (symbol 
types, colors, size,…) conditional to certain ‘factors’.  Factors play a very important 
part in the statistical applications of R – for our application, it suffices to know that 
the factors are integers, starting from 1.  

 

In the R-statement below, we simply use different symbols (pch) and colors (col) for 
each tree: pch=(15:20)[Orange$Tree] means that, depending on the value of 
Orange$Tree (i.e. the tree number), the symbol (pch) will take on the value 15 
(tree=1), 16 (tree=2),… 20 (tree=5). col=(1:5) [Orange$Tree] does the same for 
the point color.The final statement adds a legend, positioned at the bottom, right. 

plot(Orange$age, Orange$circumference,xlab=”age, 
   days”,ylab=”circumference, mm”, main= “Orange tree growth”,  
   pch=(15:20)[Orange$Tree],col=(1:5) [Orange$Tree],cex=1.3) 

legend(“bottomright”,pch=15:20,col=1:5,legend=1:5) 

 

The output (figure on the right) shows that tree number 5 grows fastest, tree number 
1 is slowest growing. 

(note: it is also instructive to run the examples in the Orange help file. ) 

 



Using R for scientific computing   

 

30 

 

500 1000 1500

50
10

0
15

0
20

0

Orange tree growth

age, days

ci
rc

um
fe

re
nc

e,
 m

m

500 1000 1500

50
10

0
15

0
20

0

Orange tree growth

age, days

ci
rc

um
fe

re
nc

e,
 m

m

1
2
3
4
5

 

6.3.1 Zooplankton growth rates 

“Zoogrowth” from package “marelac” is a literature data set, compiled by Hansen et 
al. (1997) with measurements of maximal growth rates of zooplankton organisms as 
a function of body volume. Run the example for this data set (you will need to load 
package “marelac” first):  

require(marelac) 
example(Zoogrowth) 

6.4 Images and contour plots 

R has some very powerful functions to create images and add contours. For 
example, the data set “Bathymetry” from the marelac package can be used to 
generate the bathymetry (and hypsometry) of the world oceans (and land): 

require(marelac) 
image(Bathymetry$x,Bathymetry$y,Bathymetry$z,col=femmecol(100), 
      asp=TRUE,xlab="",ylab="") 
contour(Bathymetry$x,Bathymetry$y,Bathymetry$z,add=TRUE) 

Note the use of “asp=TRUE”, which maintains the aspect ratio.  
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6.5 Plotting a mathematical function 

Plot curves for mathematical functions are quickly generated with R-command 
“curve”: 

curve(sin(3*pi*x)) 

will plot the curve for y=sin(3*π*x), using the default settings (Fig. left),  

while:  

curve(sin(3*pi*x),from=0,to=2,col=”blue”, 
      xlab=”x”,ylab=”f(x)”,main=”curve”) 
curve(cos(3*pi*x),add=TRUE,col=”red”,lty=2) 

first draws a graph of y=sin(3*π*x), in blue (col), and for x values ranging between 0 
and 2 (from, to), adding a main title (main) and x- and y-axis labels (xlab, ylab) (1st 
sentence).  

The 2nd R-sentence adds the function y=cos(3*π*x), as a red (col) dashed line (lty). 
Note the use of parameter “add=TRUE”, as by default curve creates a new plot. 

The final statements adds the x-axis, i.e. a horizontal, dashed (lty=2), line (abline) 
at y=0 and a legend. 

abline(h=0,lty=2) 
legend(“bottomleft”,c(“sin”,“cos”),text.col=c(“blue”,”red”),lty=1:2) 
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6.6 Multiple figures 

There are several ways in which to arrange multiple figures on a plot.  

1. The simplest is by specifying the number of figures on a row (mfrow) and on a 
column (mfcol): 

par(mfrow=c(3,2)) 

will arrange the next plots in 3 rows, 2 columns. Graphs will be plotted row-wise.  

par(mfcol=c(3,2)) 

will arrange the plots in 3 columns, 2 rows, in a columnwise sequence.  

Note that both mfrow and mfcol must be inputted as a vector. Try: 

par(mfrow=c(2,2)) 
for ( i in 1:4) curve(sin(i*pi*x),0,1,main=i) 
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2. R-function “layout” allows much more complex plot arrangements.   

6.7 Exercises 

6.7.1 Simple curves 
 Create a script file which draws a curve of the function y=x3 sin2 (3π x) in 

the interval [-2 , 2]. 
 Make a curve of the function y=1/cos(1+x^2) in the interval [-5,5]. 

 

6.7.2 Human population growth 

The human population (N, millions of people) at a certain time t, can be described as 
a function of time (t), the initial population density at t=t0 (Nt0), the carrying capacity 
“K” and the rate of increase “a” by the following equation: 
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For the US, the population density in 1900 (N0) was 76.1 million; the population 
growth can be described with parameter values: a=0.02 yr-1, K =  500 million of 
people. 

Actual population values are:  

1900 1910 1920 1930 1940 1950 1960 1970 1980  

76.1 92.4 106.5 123.1 132.6 152.3 180.7 204.9 226.5 
Tasks: 

 Plot the population density curve as a thick line, using the US parameter 
values.  

 Add the measured population values as points. Finish the graph with 
titles, labels etc… 

6.7.3 Toxic ammonia 

Ammonia nitrogen is present in two forms: the ammonium ion (NH4
+) and unionized 

ammonia (NH3). As ammonia can be toxic at sufficiently high levels, it is often 
desirable to know its concentration.  
The relative importance of ammonia, (the contribution of ammonia to total ammonia 
nitrogen, NH3/( NH3+ NH4

+)) is a function of the proton concentration [H+] and a 
parameter KN, the so-called stoichiometric equilibrium constant:  

][  
][ 3 ++
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Tasks: 
 Plot the relative fraction of toxic ammonia to the total ammonia 

concentration as a function of pH, where pH = -log10([H+]) and for a 
temperature of 30°C. Use a range of pH from 4 to 9. The value of KN is 8 
10-10 at a temperature of 30°C. 

                                                      
5 This is the solution of a so-called logistic differential equation (Verhulst, 1838) 
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 Add to this plot the relative fraction of ammonia at 0°C; the value of KN at 
that temperature is 8 10-11 mol kg-1.  

 

6.7.4 The iris data set 

A famous data set that is part of R is the “iris” data set (Fisher, 1936), which we will 
explore next. 

It gives measurements, in centimeters for sepal length and width and petal length 
and width, respectively, for 50 flowers of the species Iris setosa, Iris versicolor and 
Iris virginica. 

Tasks: 
 Have a look at the data: 
 What is the class of the data set? why? 
 What are the dimensions of the data set? (number of rows, columns) 
 Produce a scatter plot of petal length against petal width; produce an 

informative title and labels of the two axes. 
 Repeat the same graph, using different symbol colours for the three 

species. 
 Add a legend to the graph. Copy-paste the result to a WORD document. 
 Create a box-and whisker plot for sepal length where the data values are 

split into species groups; use as template the first example in the 
“boxplot” help file. 

 Now produce a similar box-and whisker plot for all four morphological 
measurements, arranged in two rows and two columns. First specify the 
graphical parameter that arranges the plots two by two.  
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Chapter  7 
M

Chapter 7
atrix algebra 

Matrix algebra is very simple in R. Practically everything is possible! 

Here are the most important R-functions that operate on matrices: 
 %*%   Matrix multiplication 
 t(A)  transpose of A 
 diag(A)  diagonal of A 
 solve(A)  inverse of A 
 solve(A,B) solving Ax=B for x 
 eigen(A) eigenvalues and eigenvectors for A 
 det(A)  determinant of A 

For instance 

> A <-matrix(nrow=2,data=c(1,2,3,4)) 
> solve(A) %*% A 

will invert matrix A (solve(A)), and multiply with A (%*%), giving the unity matrix: 
     [,1] [,2] 
[1,]    1    0 
[2,]    0    1 

 

whilst t(A) will transpose matrix A (interchange rows and columns). 

> t(A)  
 1 2 
 3 4 

 

The next set of statements will solve the linear system Ax=B for the unknown vector 
x: 

> B <- c(5,6) 
> solve(A,B) 
 [1] -1  2 

 

Finally, the eigenvalues and eigenvectors of A are estimated using R-function 
“eigen”. This function returns a list that contains both the eigenvalues ($values) 
and the eigenvectors ($vectors), (the columns).   

> eigen(A) 
$values 
[1]  5.3722813 -0.3722813 
 
$vectors 
           [,1]       [,2] 
[1,] -0.5657675 -0.9093767 
[2,] -0.8245648  0.4159736 
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7.1 Exercises 

Matrix algebra 1 
 Use R-function “matrix” to create the matrices called “A” and “B”: 

A= ⎥14 , B= 85  

⎥
⎥
⎦⎢

⎢
⎣ −− 112

⎤
⎢
⎡

6
321

⎥
⎤

⎢
⎡
2

741

⎥
⎥
⎦⎢

⎢
⎣ 963

 Take the inverse of A and the transpose of A. 
 Multiply A with B.  
 Estimate the eigenvalues and eigenvectors of A. 
 For a matrix A, x is an eigenvector, and λ the eigenvalue of a matrix A, if 

Ax =λx. Test it! 

 

Matrix algebra 2 
 Create a matrix, called P: 

⎥
⎥

⎥
⎤

⎢
⎢
⎢
⎢
⎡

09534.00736.00
009111.09775.0
01132.00043.00

⎥  

⎦⎣ 9804.00452.000
 What is the value of the largest eigenvalue (the so-called dominant 

eigenvalue) and the corresponding eigenvector?.  
 Create a new matrix, T, which equals P, except for the first row, where 

the elements are 0.  
 Now estimate N= (I-T)-1, where I is the identity matrix.6 

 

System of linear equations 
 Solve the following system of linear equations for the unknown xi: 

3x1 + 4x2 + 5x3 = 0 
6x1 + 2x2 + 7x3 = 5 
7x1 +   x2          = 6 

 You will first need to rewrite this problem in the form: Ax=B, where A 
contains the coefficients, x the unknowns, and B the right-hand side 
values. Then you solve the system, using R-function “solve” 

 Check the results (i.e. is Ax =? B) 

                                                      
6 Note: this is a stage-model of a killer whale (Caswell, 2001). The eigenvalue-
eigenvectors estimate the rate of increase and stable age distribution, the matrix N 
contains the mean time spent in each stage. 
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Chapter  8 
R

Chapter 8
oots of functions 

8.1 Root of a simple function 

Suppose we want to solve the following problem: cos(x) = 2*x for x.  

Mathematically, we seek the root of the function y= cos(x) - 2*x, this is the value of 
x for which y = 0. As the function is quite complex, it is not possible to find an exact 
solution (an explicit expression) for this root. 

It is always a good idea to plot the equation (1st line), and add the x-axis (2nd line).  

curve(cos(x)-2*x,-10,10) 
abline(h=0,lty=2) 
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This figure shows that there indeed exists a value x, for which y = 0. 

Now R-function “uniroot“ can be used to locate this value.  
Functions that seek a root from a nonlinear equation generally work ‘iteratively’, i.e. 
they move closer and closer to the root in successive steps (iterations).  
It is usually not feasible to find this root exactly, so it is approximated, i.e. up to a 
certain accuracy (tol, a very small number)7.  

For the method to work, there should be at least one root in the interval. The 
statement below solves for the root; it returns several values, as a list.  

>uniroot(f = function(x) cos(x)-2*x, interval=c(-10,10)) 
$root 
[1] 0.4501686 
$f.root 
[1] 3.655945e-05 
$iter 
[1] 5 
$estim.prec 
[1] 6.103516e-05 

The most important value is the root itself ($root), which is 0.45103686; the function 
value at the root was 3.66e-5, the function performed 5 iterations.  

                                                      
7 More specifically: the root of y=cosx-2*x is the value x for which  | cos(x)-2*x | < tol 
or for which successive changes of x are < tol 
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In this example, the function was simple enough to include it in the call to “uniroot”. 
The next chapter gives a more complex example from aquatic chemistry, where the 
equation to solve is significantly more complex.  

8.2 Root of a complex function: solving pH  

In aquatic systems, the buffering capacity of dissolved inorganic carbon (DIC) 
species: carbon dioxide (CO2), bicarbonate ions (HCO3

-) and carbonate ions (CO3
2-) 

keep pH in a narrow range. The buffering capacity is measured by total alkalinity (TA, 
defined below).  

If alkalinity and inorganic carbon concentration (DIC) are known, it is possible to 
calculate pH (Park, 1969; Zeebe & Wolf-Gladrow, 2003), by solving the following 
equations for the unknown proton concentration [H+]. 8 

DIC
KKHKHH

HK

CCC

C ⋅
⋅+⋅+⋅

⋅
= +++

+

211

1-
3 ][][][

][
][HCO  (1) 

DIC
KKHKHH

KK

CCC

CC ⋅
⋅+⋅+⋅

⋅
= +++

211

21-2
3 ][][][

][CO 
 (2) 

][H][HCO][CO2 -
3

-2
3

+−+=TA     (3) 

Here is how to solve for the proton concentration [H+] (or the pH value) in R.  

The trick is to estimate alkalinity based on a guess of proton concentration, using 
equation (3) and compare that with the measured alkalinity value. If both are equal 
within the tolerance level, the proton concentration has been found.  

In the implementation below, the dissociation constants for carbonate (kc1, kc2) and 
at salinity 0, temperature 20, and pressure 0 are calculated in R’s package seacarb, 
which has to be loaded first (require). 

We then define a function whose root has to be solved (pHfunction). In this function 
we estimate total alkalinity, based on the guess of pH, the dissociation constants 
(kc1,kc2) and the DIC concentration. The difference of this calculated alkalinity 
(EstimatedAlk) with the true alkalinity is then returned; if pH is correctly estimated, 
then true and estimated alkalinity will be equal, and the difference will be zero. So, to 
find the pH, we need to find the root of this function. 

Note that the conversion from pH to H+ gives the proton concentration in mol kg-1. As 
the concentrations of the other substances are in µmol kg-1, we convert using a 
factor 106. 

We restrict the region of the pH root in between 0 and 12 (which is more than large 
enough), and we set the tolerance (tol) to a very small number to increase precision. 

 

require(seacarb) 

kc1 <- K1(S=0,T=20,p=0)    # Carbonate k1 
kc2 <- K2(S=0,T=20,p=0)    # Carbonate k2 
 

                                                      
8 in practice, it is possible to merge these 3 equations such that only one equation is 
obtained, but this is neither didactically clearer nor computationally more efficient. 
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pHfunction <- function(pH, kc1,kc2, DIC, Alkalinity ) 
{ 
   H    <- 10^(-pH)     
   HCO3 <- H*kc1  /(H*kc1 + H*H + kc1*kc2)*DIC 
   CO3  <- kc1*kc2 /(H*kc1 + H*H + kc1*kc2)*DIC 
 

   EstimatedAlk  <- -H *1.e6  + HCO3 + 2*CO3 
   return ( EstimatedAlk  - Alkalinity) 
} 

uniroot(pHfunction, interval=c(0, 12), tol=1.e-20, kc1=kc1, kc2=kc2, 
        DIC=2100, Alkalinity=2200) 

8.3 Exercises 

8.3.1 Simple functions 
 Find the root of the equation ex = 4x2 in the interval [0,1].  

First draw the function curve. 
 Solve the equations 1000=y*(3+x)*(1+y)4 for y and with x varying over the 

range from 1 to 100. Plot the root as a function of x.  
Tip: first make a sequence of x-values, then loop over each “x” value, 
each time estimating the root and putting it in a vector. 

8.3.2 Chemistry: pCO2 rises increase acidity  

pH can also be estimated based on the measured alkalinity and pCO2, the partial 
pressure of CO2. To solve this equation, it is simplest to use another (equivalent) 
way to write the relationships between the DIC species: 

][
][][ 2

13 +
− ⋅=

H
COKHCO C  

][
][][ 3

2
2
3 +

−
− ⋅=

H
HCOKCO C  

pCO2 relates to [CO2] through Henry’s constant, Kh, which can also be estimated as 
a function of salinity, temperature and pressure, using R-package seacarb: 

Kh
CO ][

pCO 2
2 =  

 Estimate the pH at equilibrium with alkalinity 2300 µmol kg-1 and the 
current pCO2 of 360 ppm. Use package seacarb to estimate the 
dissociation constants and Henry’s constants at temperature 20°C, 
salinity 0, and pressure 0.     (A: pH=8.19) 

 The Intergovernmental Panel on Climate Change predicts for 2100 an 
atmospheric CO2 concentration ranging between 490 and 1250 ppmv, 
depending on the socio-economic scenario (IPCC, 2007). These 
increases of pCO2 make the water more acid. Make a plot of pH as a 
function of these increased atmospheric pCO2 levels. (Assume that the 
pCO2 of the ocean is at equilibrium with the atmospheric pCO2). What is 
the maximal drop of pH ?  (A: at pCO2 of 1250 ppmv, pH=7.68). 
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Chapter  9 
I

Chapter 9
nterpolating, smoothing, curve 
fitting 

9.1 Interpolation, smoothing  

Interpolating and smoothing in R can be done in several ways: 
 approx linearly interpolates through points 
 spline uses spline interpolation, which is smoother 
 smooth.spline smoothens data sets; this means that it does not connect 

the original points. 

The use of these functions is exemplified in the following script and corresponding 
output: 

x <- 1:10 
y <- c(9,8,6,7,5,8,9,6,3,5) 

plot(x,y,pch=16,cex=2,main=”interpolation,smoothing”) 

lines (spline(x,y, n=100),lty=1) 
points(approx(x,y, xout=seq(1,10,0.1)),pch=1) 
lines (smooth.spline(x,y),lty=2) 
legend(“bottomleft”,lty=c(1,NA,2),pch=c(NA,1,NA), 
       legend=c(“spline”,”approx”,”smooth.spline”)) 
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9.2 Curve fitting 

R also has several curve fitting procedures. Depending on whether the function to be 
fitted is linear, or non-linear, you may use: 

 lm and glm for fitting linear models and “generalised” linear models 
 nls, nlm, optim, constrOptim for nonlinear models. 

 

As an example, we now fit the US population density values, at 10-year intervals, 
with the logistic growth model (chapter 6.7.2). The model was: 

)0(

0

0 ][1
)(

tta

t

t e
N

NK
KtN

−⋅−−
+

=  , and the data: 

1900 1910 1920 1930 1940 1950 1960 1970 1980  

76.1 92.4 106.5 123.1 132.6 152.3 180.7 204.9 226.5 

We start by inputting the data.  

year<- seq(1900,1980,by=10) 
pop <- c(76.1,92.4,106.5,123.1,132.6,152.3,180.7,204.9,226.5) 
 

 

The simplest method for non-linear curve fitting is by using R-function “nls”.  

This functions requires as input the formula (y ~ f (x,parameters)) and starting values 
of the parameters.  

In the example, y are the population values, f is the logistic growth formulation. As 
starting conditions, we use: K=500,N0=76.1,a=0.02. 

fit <- nls(pop~K/(1+(K-N0)/N0*exp(-a*(year-1900))), 
           start=list(K=500,N0=76.1,a=0.02)) 

 

We end the fitting by printing a summary of the fitting parameters, which shows the 
estimates of the parameters and their standard errors.  

Clearly, it is not possible to obtain reliable estimates of the value of K based on the 
data. 

>summary(fit) 
Formula: pop ~ K/(1 + (K - N0)/N0 * exp(-a * (year - 1900))) 
 
Parameters: 
    Estimate Std. Error t value Pr(>|t|)     
K  1.008e+03  8.932e+02   1.129  0.30209     
N0 7.866e+01  2.531e+00  31.084 7.36e-08 *** 
a  1.550e-02  2.505e-03   6.188  0.00082 *** 
… 

The values of the coefficients themselves are retrieved using R-function “coef”. 

>(cc<-coef(fit)) 
           K           N0            a  
1.008226e+03 7.866365e+01 1.550344e-02 
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9.3 Exercises 

Smoothing 

An anemometer measures wind-velocity at three hourly intervals. On a certain day, 
these velocities are: 5,6,7,9,4,6,3,7,9 at time 0, 3, …24 o’clock respectively. In order 
to estimate air-sea exchange, we need hourly measures.  

Tasks: 
 Interpolate the three-hourly measurements to hourly measurements. 
 Make a plot of the interpolated values 

 

Fitting 

Primary production is measured by 14C incubations from phytoplankton samples, at 
different light intensities.  

The data are: 

ll <- c(0.,1,10,20,40,80,120,160,300,480,700) 

pp <- c(0.,1,3,4,6,8,10,11,10,9,8) 

 

Fit the resulting production estimates (pp), as a function of light intensity (ll) with the 
3-parameter Eilers-Peeters equation.  

The primary production is calculated as: 

12)(

)1(2
max

2 +⋅⋅+

⋅+⋅
⋅=

Iopt
I

Iopt
I

Iopt
I

ppp
β

β
 

where I is light and pmax, β and Iopt are parameters.  

 
 First plot primary production (pp) versus light  (ll). Use large symbols.  
 Then use R-function “nls” to fit the model to the data  
 Add the best-fit line to the graph. (note: use coef to retrieve the best 

parameter values). 

 

 



Using R for scientific computing   

 

42 

 

Chapter  10 
D

Chapter 10
ifferential equations 

Differential equations express the rate of change of a constituent (C) along one or 
more dimensions, usually time and/or space.  

Consider the following set of two differential equations: 

BAkByr
dt
dB

BAkAxr
dt
dA

⋅⋅+−⋅=

⋅⋅−−⋅=

)(

)(
 

 A and B are called differential variables (or state variables),  

 
dt
dA

is the derivative (or the rate of change),  

 r,x,y and k are parameters (constants). 

 

To solve sets of differential equations in R we define a function (here called model), 
and which has as input the time (t), the values of the state variables (state) and 
the values of the parameters (pars). This function simply calculates the rate of 
change of the state variables (dA and dB) and returns those as a list.  

The R-statement “with (as.list (c(state,pars)),{ }“ ensures that the 
state variables and parameters can be addressed by their names. 

 

model <- function(t,state,pars) 
{ 
with (as.list(c(state,pars)), 
{ 
 dA <- r*(x-A)-k*A*B 
 dB <- r*(y-B)+k*A*B 
 return (list(c(dA,dB))) 
 }    
     ) 
} 

 

Before we can solve this model, we  
 generate a sequence of time values at which we want output (times),  
 assign initial conditions to the state variables (state) and  
 give values to the parameters (parms): 

times <- seq(0,300,1) 
state <- c(A=1,B=1) 
parms <- c(x =1, y = 0.1, k = 0.05, r = 0.05) 

 

The model can now be solved. To do so, we use R’s integration routine ode; which 
can be found in R-package deSolve. This package is loaded first.  
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require(deSolve) 

 
At each time t, “ode” will call function “model”, with the current values of the state 
variables and the parameter values.  

The output is stored in a data.frame, called “out“. 

out   <- as.data.frame(ode(state,times,model,parms)) 

 

All we need to do now is to plot the model output. Before we do so, we have a look 
at data.frame out: 

>head(out) 
  time         A         B 
1    0 1.0000000 1.0000000 
2    1 0.9523189 1.0037869 
3    2 0.9090698 1.0052847 
4    3 0.8699233 1.0047146 
… 

 

The data are arranged in three columns: first the time, then the concentrations of A 
and B. As out is a data frame we can extract the data using their names (out$time, 
out$A, out$B). 

Before plotting the model output, the range of concentrations of substances A and B 
is estimated; this is used to set the limits of the y-axis (ylim).  

R-function plot creates a new plot; lines adds a line to this plot; lty selects a line 
type; lwd=2 makes the lines twice as thick as the default. Finally a legend is added. 

ylim   <- range(c(out$A,out$B)) 
plot(out$time,out$A,xlab="time",ylab="concentration", 
      lwd=2,type="l",ylim=ylim,main="model") 
lines(out$time,out$B,lwd=2,lty=2) 
legend("topright",legend=c("A","B"),lwd=2,lty=c(1,2))  
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10.1.1 Exercises 

Lotka-volterra model 9 
 Write a script file that solves the following system of ODEs: 

yeyxbg
dt
dy

yxb
K

xa
dt

⋅−⋅⋅⋅=

⋅⋅−−⋅⋅= )1( xdx

 
for initial values x=300,y=10 and parameter values: a=0.05, K=500, b=0.0002, g=0.8, 
e=0.03 

 Make three plots, one for x and one for y as a function of time, and one 
plot expressing y as a function of x (this is called a phase-plane plot). 
Arrange these plots in 2 rows and 2 columns. 

 Now run the model with other initial values (x=200, y=50); add the (x,y) 
trajectories to the phase-plane plot  

 

Butterfly 

The Lorenz equations (Lorenz, 1963) were the first chaotic system of differential 
equations to be discovered. They are three differential equations that were derived 
to represent idealized behavior of the earth’s atmosphere.  

zyyx
dt
dz
dt

−+⋅−= 28

zydy

zyx
dt
dx

−⋅−=

⋅+⋅−=

)(10

3
8

                                                     

 
 It takes about 10 lines of R-code to generate the solutions and plot them. 
 Function “scatterplot3d” from the package scatterplot3d generates 

3-D scatterplots. Can you recreate the following “butterfly” ? Use as initial 
conditions x=y=z=1; create output for a time sequence ranging from 0 to 
100, and with a time step of 0.005. 

 

 
9 The Lotka-Volterra models are a famous type of models that either describe 
predator-prey interactions or competitive interactions between two species.  
A.J. Lotka and V. Volterra formulated the original model in the 1920’s almost 
simultaneously (Lotka, 1925, Volterra, 1926). 
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Chapter  11 Chapter 11  
Finally 

11.1 Questions 

These lecture notes have been generated with WORD (© Microsoft). If you do not 
like the layout (or if you do not like WORD), a different version can be found as a 
vignette in package “marelac”. This vignette has been created with LaTeX and R-
package “Sweave” (Leisch, 2002), which allows to merge LaTeX with R-code.  

From within R, type: 

> vignette(“UsingR”) 

Or, you can find the file “UsingR.pdf” in the \inst\doc subdirectory of package 
“marelac”. 

11.2 Answers 

The answers to the questions in this course are present as an R-vignette in package 
“marelac”.  

From within R, type: 

> vignette(“Answers”) 

Or, you can find the file “Answers.pdf” in the \inst\doc subdirectory of package 
“marelac”. 
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