## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # genome <- initializeGenomeObject(file = "genome.fasta") # parameter <- initializeParameterObject(genome = genome, sphi = 1, num.mixtures = 1, geneAssignment = rep(1, length(genome))) # model <- initializeModelObject(parameter = parameter, model = "ROC") # mcmc <- initializeMCMCObject(samples = 5000, thinning = 10, adaptive.width=50) # runMCMC(mcmc = mcmc, genome = genome, model = model) ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # parameter <- initializeParameterObject(genome = genome, sphi = c(0.5, 2), num.mixtures = 2, geneAssignment = sample.int(2, length(genome), replace = T)) ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # genome <- initializeGenomeObject(file = "genome.fasta", observed.expression.file = "synthesis_values.csv") ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # # One case of observed data # sepsilon <- 0.1 # # Two cases of observed data # sepsilon <- c(0.1, 0.5) # # ... # # Five cases of observed data # sepsilon <- c(0.1, 0.5, 1, 0.8, 3) # # parameter <- initializeParameterObject(genome = genome, sphi = 1, num.mixtures = 1, geneAssignment = rep(1, length(genome)), init.sepsilon = sepsilon) ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # model <- initializeModelObject(parameter = parameter, model = "ROC", fix.observation.noise = TRUE) ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # genome <- initializeGenomeObject(file = "genome.fasta") # parameter <- initializeParameterObject(genome = genome, sphi = 1, num.mixtures = 1, geneAssignment = rep(1, length(genome))) # model <- initializeModelObject(parameter = parameter, model = "ROC") ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # mcmc <- initializeMCMCObject(samples, thinning=1, adaptive.width=100, est.expression=FALSE, est.csp=TRUE, est.hyper=TRUE, est.mix=TRUE) ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # mcmc <- initializeMCMCObject(samples, thinning=1, adaptive.width=100, est.expression=TRUE, est.csp=FALSE, est.hyper=TRUE, est.mix=TRUE) ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # mcmc <- initializeMCMCObject(samples, thinning=1, adaptive.width=100, est.expression=TRUE, est.csp=TRUE, est.hyper=FALSE, est.mix=TRUE) ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # mcmc <- initializeMCMCObject(samples, thinning=1, adaptive.width=100, est.expression=TRUE, est.csp=TRUE, est.hyper=TRUE, est.mix=FALSE) ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # genome <- initializeGenomeObject(file = "genome.fasta") # parameter <- initializeParameterObject(genome = genome, sphi = 1, num.mixtures = 1, geneAssignment = rep(1, length(genome))) # parameter$fixDM() # parameter$fixDEta() ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # genome <- initializeGenomeObject(file = "genome.fasta") # parameter <- initializeParameterObject(genome = genome, sphi = 1, num.mixtures = 1, geneAssignment = rep(1, length(genome))) # # fix_dm <- TRUE # fix_deta <- FALSE # # parameter$initMutationCategories(dM.file,1,fix_dm) # parameter$initSelectionCategories(dEta.file,1,fix_deta) # # parameter <- initializeParameterObject(genome = genome, sphi = c(1,1), num.mixtures = 2, geneAssignment = sample.int(2, length(genome), replace = T), mixture.definition = "mutationShared") # # fix_dm <- TRUE # fix_deta <- FALSE # # parameter$initMutationCategories(dM.file,1,fix_dm) # parameter$initSelectionCategories(dEta.file,2,fix_deta) # ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # parameter <- initializeParameterObject(genome = genome, sphi = c(0.5, 2), num.mixtures = 2 # , geneAssignment = sample.int(2, length(genome), replace = T), # mixture.definition = "allUnique") ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # parameter <- initializeParameterObject(genome = genome, sphi = c(0.5, 2), num.mixtures = 2 # , geneAssignment = sample.int(2, length(genome), replace = T), # mixture.definition = "mutationShared") ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # parameter <- initializeParameterObject(genome = genome, sphi = c(0.5, 2), num.mixtures = 2 # , geneAssignment = sample.int(2, length(genome), replace = T), # mixture.definition = "selectionShared") ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # # [,1] [,2] # #[1,] 1 1 # #[2,] 1 2 # #[3,] 1 3 # def.matrix <- matrix(c(1,1,1,1,2,3), ncol=2) # parameter <- initializeParameterObject(genome = genome, sphi = c(0.5, 2, 1), num.mixtures = 3, # geneAssignment = sample.int(3, length(genome), replace = T), # mixture.definition.matrix = def.matrix) ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # # [,1] [,2] # #[1,] 1 1 # #[2,] 2 2 # #[3,] 3 3 # def.matrix <- matrix(c(1,2,3,1,2,3), ncol=2) ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # # [,1] [,2] # #[1,] 1 1 # #[2,] 2 1 # #[3,] 1 2 # def.matrix <- matrix(c(1,2,1,1,1,2), ncol=2) ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # # writing a restart file every 1000 samples # setRestartSettings(mcmc, "restart_file", 1000, write.multiple=TRUE) # # writing a restart file every 1000 samples but overwriting it every time # setRestartSettings(mcmc, "restart_file", 1000, write.multiple=FALSE) ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # initializeParameterObject(init.with.restart.file = "restart_file.rst") ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # #save objects after a run # runMCMC(mcmc = mcmc, genome = genome, model = model) # writeParameterObject(parameter = parameter, file = "parameter_out.Rda") # writeMCMCObject(mcmc = mcmc, file = "mcmc_out.Rda") ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # #save objects after a run # parameter <- loadParameterObject(file = "parameter_out.Rda") # mcmc <- loadMCMCObject(file = "mcmc_out.Rda") ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # parameter <- initializeParameterObject(genome = genome, sphi = 1, num.mixtures = 1, geneAssignment = rep(1, length(genome)),model="FONSE",init.initiation.cost=a1) # # model <- initializeModelObject(parameter,"FONSE") # ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # # trace <- parameter$getTraceObject() # # plot(trace,what="InitiationCost") # # trace_a1 <- trace$getInitiationCostTrace() # mean_a1 <- mean(trace_a1) # sd_a1 <- sd(trace_a1) # ci_a1 <- quantile(trace_a1,probs = c(0.025,0.975)) # ## ----echo=TRUE,eval=FALSE----------------------------------------------------- # # genome.pa <- initializeGenomeObject("rfp.csv",fasta=FALSE,positional=FALSE) # genome.panse <- initializeGenomeObject("rfp.csv",fasta=FALSE,positional=TRUE) # ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # csp_mat <- getCSPEstimates(parameter = parameter, CSP="Mutation", mixture = 1, samples = 1000) # head(csp_mat) # # AA Codon Posterior 0.025% 0.975% # #1 A GCA -0.2435340 -0.2720696 -0.2165220 # #2 A GCC 0.4235546 0.4049132 0.4420680 # #3 A GCG 0.7004484 0.6648690 0.7351707 # #4 C TGC 0.2016298 0.1679025 0.2387024 # #5 D GAC 0.5775052 0.5618199 0.5936979 # #6 E GAA -0.4524295 -0.4688044 -0.4356677 # # getCSPEstimates(parameter = parameter, filename = "mutation.csv", CSP="Mutation", mixture = 1, samples = 1000) ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # phi_mat <- getExpressionEstimates(parameter = parameter, # gene.index = 1:length(genome), # samples = 1000) # head(phi_mat) # # Mean Mean.log10 Std.Dev log10.Std.Dev 0.025 0.975 log10.0.025 log10.0.975 # #[1,] 0.2729446 -0.6188447 0.0001261525 2.362358e-04 0.07331819 0.5455295 -1.13478830 -0.26319141 # #[2,] 1.4221716 0.1498953 0.0001669425 5.194123e-05 1.09593642 1.7562065 0.03978491 0.24457557 # #[3,] 0.7459888 -0.1512764 0.0002313539 1.529267e-04 0.31559618 1.2198282 -0.50086958 0.08629407 # #[4,] 0.6573082 -0.2030291 0.0001935466 1.400333e-04 0.31591233 1.0699855 -0.50043989 0.02937787 # #[5,] 1.6316901 0.2098120 0.0001846631 4.986347e-05 1.28410352 2.0035207 0.10860000 0.30179215 # #[6,] 0.6179711 -0.2286806 0.0001744928 1.374863e-04 0.28478950 0.9683327 -0.54550116 -0.01397541 ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # # sampling 100 genes at random # phi_mat <- getExpressionEstimates(parameter = parameter, # gene.index = sample(1:length(genome), 100), # samples = 1000) ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # selection.coefficients <- getSelectionCoefficients(genome = genome, # parameter = parameter, # samples = 1000) # head(selection.coefficients) # # GCA GCC GCG GCT TGC TGT GAC GAT ... # #SAKL0A00132g -0.1630284 -0.008695144 -0.2097771 0 -0.1014373 0 0 -0.05092397 ... # #SAKL0A00154g -0.8494558 -0.045305847 -1.0930388 0 -0.5285367 0 0 -0.26533820 ... # #SAKL0A00176g -0.4455753 -0.023764823 -0.5733448 0 -0.2772397 0 0 -0.13918105 ... # #SAKL0A00198g -0.3926068 -0.020939740 -0.5051875 0 -0.2442824 0 0 -0.12263567 ... # #SAKL0A00220g -0.9746002 -0.051980440 -1.2540685 0 -0.6064022 0 0 -0.30442861 ... # #SAKL0A00242g -0.3691110 -0.019686586 -0.4749542 0 -0.2296631 0 0 -0.11529644 ... ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # cai.weights <- getCAIweights(referenceGenome = genome) # head(cai.weights) # # GCA GCC GCG GCT TGC TGT # #0.7251276 0.6282192 0.2497737 1.0000000 0.6222628 1.0000000 # # nc.per.aa <- getNcAA(genome = genome) # head(nc.per.aa) # # A C D E F G ... # #SAKL0A00132g 3.611111 1.000000 2.200000 2.142857 1.792453 4.109589 ... # #SAKL0A00154g 1.843866 2.500000 2.035782 1.942505 1.986595 2.752660 ... # #SAKL0A00176g 5.142857 NA 1.857143 1.652174 1.551724 3.122449 ... # #SAKL0A00198g 3.800000 NA 1.924779 1.913043 2.129032 4.136364 ... # #SAKL0A00220g 3.198529 1.666667 1.741573 1.756757 2.000000 1.371638 ... # #SAKL0A00242g 4.500000 NA 2.095890 2.000000 1.408163 3.734043 ... # ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # selection.coefficients <- getSelectionCoefficients(genome = genome, # parameter = parameter, # samples = 1000) # s <- exp(selection.coefficients) # cai.weights <- getCAIweights(referenceGenome = ref.genome) # # codon.names <- colnames(s) # h <- hist(s[, 1], plot = F) # plot(NULL, NULL, axes = F, xlim = c(0,1), ylim = range(c(0,h$counts)), # xlab = "s", ylab = "Frequency", main = codon.names[1], cex.lab = 1.2) # lines(x = h$breaks, y = c(0,h$counts), type = "S", lwd=2) # abline(v = cai.weights[1], lwd=2, lty=2) # axis(1, lwd = 3, cex.axis = 1.2) # axis(2, lwd = 3, cex.axis = 1.2) ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # trace <- getTrace(parameter) # plot(x = trace, what = "Mutation", mixture = 1) ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # trace <- parameter$getTraceObject() # plot(x = trace, what = "Expression", mixture = 1, geneIndex = 669) ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # plot(mcmc, what = "LogPosterior", zoom.window = c(9000, 10000)) ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # # use the last 500 samples from mixture 1 for posterior estimate. # plot(x = model, genome = genome, samples = 500, mixture = 1) ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # plot(parameter, what = "Selection", samples = 500)