## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- library(AnglerCreelSurveySimulation) anglers <- make_anglers(n_anglers = 100, mean_trip_length = 3.5, fishing_day_length = 12) ## ----------------------------------------------------------------------------- head(anglers) ## ----warning = FALSE---------------------------------------------------------- library(dplyr) library(ggplot2) # Histogram overlaid with kernel density curve anglers %>% ggplot(aes(x=trip_length)) + geom_histogram(aes(y=..density..), binwidth=.1, colour="black", fill="white") + geom_density(alpha=.2, fill="#FF6666") ## ----------------------------------------------------------------------------- anglers %>% get_total_values(start_time = 0, wait_time = 8, sampling_prob = 8/12, mean_catch_rate = 2.5) ## ----------------------------------------------------------------------------- sim <- simulate_bus_route(start_time = 0, wait_time = 8, n_sites = 1, n_anglers = 100, sampling_prob = 8/12, mean_catch_rate = 2.5, fishing_day_length = 12) sim ## ----------------------------------------------------------------------------- sim <- conduct_multiple_surveys(n_sims = 20, start_time = 0, wait_time = 8, n_sites = 1, n_anglers = 100, sampling_prob = 8/12, mean_catch_rate = 2.5, fishing_day_length = 12) sim ## ----------------------------------------------------------------------------- mod <- sim %>% lm((Ehat * catch_rate_ROM) ~ true_catch, data = .) summary(mod) ## ----------------------------------------------------------------------------- #Create a new vector of the estimated effort multiplied by estimated catch rate sim <- sim %>% mutate(est_catch = Ehat * catch_rate_ROM) sim %>% ggplot(aes(x = true_catch, y = est_catch)) + geom_point() + geom_abline(intercept = mod$coefficients[1], slope = mod$coefficients[2], colour = "red", size = 1.01) ## ----------------------------------------------------------------------------- mod <- sim %>% lm(Ehat ~ true_effort, data = .) summary(mod) #Create a new vector of the estimated effort multiplied by estimated catch rate sim %>% ggplot(aes(x = true_effort, y = Ehat)) + geom_point() + geom_abline(intercept = mod$coefficients[1], slope = mod$coefficients[2], colour = "red", size = 1.01) ## ----------------------------------------------------------------------------- start_time <- 0 wait_time <- 12 sampling_prob <- 1 sim <- conduct_multiple_surveys(n_sims = 20, start_time = start_time, wait_time = wait_time, n_sites = 1, n_anglers = 100, sampling_prob = 1, mean_catch_rate = 2.5, fishing_day_length = 12) sim ## ----echo = FALSE------------------------------------------------------------- mod <- sim %>% lm(Ehat ~ true_effort, data = .) summary(mod) sim %>% ggplot(aes(x = true_effort, y = Ehat)) + geom_point() + geom_abline(intercept = mod$coefficients[1], slope = mod$coefficients[2], colour = "red", size = 1.01) ## ----------------------------------------------------------------------------- start_time <- c(0, 4.5) wait_time <- c(4, 3.5) n_sites = 2 n_anglers <- c(50, 50) fishing_day_length <- 12 sampling_prob <- sum(wait_time)/fishing_day_length sim <- conduct_multiple_surveys(n_sims = 20, start_time = start_time, wait_time = wait_time, n_sites = n_sites, n_anglers = n_anglers, sampling_prob = sampling_prob, mean_catch_rate = 2.5, fishing_day_length = fishing_day_length) sim ## ----echo = FALSE------------------------------------------------------------- mod <- sim %>% lm(Ehat ~ true_effort, data = .) summary(mod) sim %>% ggplot(aes(x = true_effort, y = Ehat)) + geom_point() + geom_abline(intercept = mod$coefficients[1], slope = mod$coefficients[2], colour = "red", size = 1.01) ## ----------------------------------------------------------------------------- #Weekend clerks start_time_w <- 2 wait_time_w <- 10 n_sites <- 1 n_anglers_w <- 75 fishing_day_length <- 12 sampling_prob <- 8/12 sim_w <- conduct_multiple_surveys(n_sims = 8, start_time = start_time_w, wait_time = wait_time_w, n_sites = n_sites, n_anglers = n_anglers_w, sampling_prob = sampling_prob, mean_catch_rate = 2.5, fishing_day_length = fishing_day_length) sim_w #Add the weekday survey and weekend surveys to the same data frame mon_survey <- sim_w %>% bind_rows(sim) mod <- mon_survey %>% lm(Ehat ~ true_effort, data = .) summary(mod) ## ----echo = FALSE------------------------------------------------------------- mon_survey %>% ggplot(aes(x = true_effort, y = Ehat)) + geom_point() + geom_abline(intercept = mod$coefficients[1], slope = mod$coefficients[2], colour = "red", size = 1.01)