## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(BLA) ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # library(aplpack) ## ----echo=FALSE--------------------------------------------------------------- original_scipen <- getOption("scipen") options(scipen = 999)# disabling scientific notation i.e 1.1*10^2 ## ----fig.align='center', fig.dim=c(4,4)--------------------------------------- head(soil) ## ----------------------------------------------------------------------------- x<-soil$P y<-soil$yield ## ----fig.align='center', fig.dim=c(4,4)--------------------------------------- summastat(x) summastat(y) ## ----fig.align='center', fig.dim=c(4,4)--------------------------------------- summastat(log(x)) x<-log(x) # transforms soil P to log ## ----eval=FALSE, echo=TRUE,fig.align='center', fig.dim=c(4,4)----------------- # # vals_ur<-matrix(NA,length(x),2) #Create a matrix with x and y as required by the bag plot function # vals_ur[,1]<-x # vals_ur[,2]<-y # # bag<-bagplot(vals_ur, ylim=c(0,20), show.whiskers =F,create.plot = TRUE) # run the bagplot function # legend("topright", c("bag","loop","outliers", "d.median"), # pch = c(15,15,16,8),col=c("blue","lightblue","red","red"), # cex=0.7) # # vals<-rbind(bag$pxy.bag,bag$pxy.outer) # to remove outliers, select points in the bag and loop only # ## ----eval=TRUE, echo=FALSE,fig.align='center', fig.dim=c(4,4)----------------- # for vignette purpose only x<-log(SoilP$P) # since we required a transformation y<-SoilP$yield vals <- data.frame(x,y) ## ----------------------------------------------------------------------------- x<-vals[,1] y<-vals[,2] ## ----fig.align='center', fig.dim=c(5,4)--------------------------------------- bound_test<-expl_boundary(x,y,shells = 10, simulations = 100, pch=16, col="grey") # bound_test ## ----eval=FALSE--------------------------------------------------------------- # ?bolides ## ----fig.align='center', fig.dim=c(4,4)--------------------------------------- bolides(x,y,model = "explore", pch=16, col="grey") ## ----eval=FALSE--------------------------------------------------------------- # ?startValues() ## ----eval=FALSE--------------------------------------------------------------- # # startValues("trapezium") # then select the five points at the edge of the dataset that make up the trapezium model in order of increasing x values. ## ----fig.align='center', fig.dim=c(4,4)--------------------------------------- start<-c(4,3,14,104,-22) # start values is a vector of five consists of intercept, slope, plateau yield, intercept2 and slope2. model1<-bolides(x,y, start = start,model = "trapezium", xlab=expression("Phosphorus/ln(mg L"^-1*")"), ylab=expression("Yield/ t ha"^-1), pch=16, col="grey", bp_col="grey") model1 ## ----------------------------------------------------------------------------- P<-c(4.5, 7.4, 12.2, 20.1, 54.5) P_log<-log(P) Max_Response<-predictBL(model1, P_log) # the argument inputs are the boundary line model and the independent values (in this case P_log) Max_Response ## ----eval=FALSE--------------------------------------------------------------- # ?blbin ## ----fig.align='center', fig.dim=c(4,4)--------------------------------------- bins<-c(1.61,4.74,0.313) blbin(x,y, bins,model = "explore", tau=0.99, pch=16, col="grey") ## ----eval=FALSE--------------------------------------------------------------- # startValues("trapezium") ## ----fig.align='center', fig.dim=c(4,4)--------------------------------------- start<-c(4.75, 3.23, 13.3, 24.87,-2.95 ) model2<-blbin(x,y, bins,start = start,model = "trapezium", tau=0.99, ylab=expression("t ha"^-1), xlab=expression("Phosphorus/ln(mg L"^-1*")"), pch=16, col="grey", bp_col="grey") model2 ## ----eval=FALSE--------------------------------------------------------------- # ?blqr ## ----fig.align='center', fig.dim=c(4,4), eval=FALSE--------------------------- # # plot(x,y) # # startValues("trapezium") ## ----fig.align='center', fig.dim=c(4,4)--------------------------------------- start<-c(4,3,13.5,31,-4.5) model3<-blqr(x,y, start = start, model = "trapezium", xlab=expression("Phosphorus/ mg L"^-1), ylab=expression("Phosphorus/ln(mg L"^-1*")"), pch=16,tau=0.99, col="grey") # may take a few seconds to ran model3 ## ----fig.align='center', fig.dim=c(4,4)--------------------------------------- bolides(x,y,model="explore", pch=16, col="grey") ## ----------------------------------------------------------------------------- custom_function<-function(x,a,b,c){ y<- a - b*(x-c)^2 } ## ----fig.align='center', fig.dim=c(4,4)--------------------------------------- start<-c(13.5,3,3.3) model4<-bolides(x,y, start = start,model = "other", equation=custom_function, xlab=expression("Phosphorus/mg L"^-1), ylab=expression("Phosphorus/ln(mg L"^-1*")"), pch=16, ylim=c(3.8,14.5), col="grey",bp_col="grey") model4 ## ----echo=FALSE--------------------------------------------------------------- options(scipen = original_scipen)# Restore the original scipen value