## ---- results="hide", warning=FALSE, message=FALSE---------------------------- library(BRETIGEA, quietly = TRUE) library(knitr) #only used for vignette creation ## ---- message = FALSE--------------------------------------------------------- str(aba_marker_expression, list.len = 5) str(aba_pheno_data, list.len = 5) ## ---- message = FALSE--------------------------------------------------------- ct_res = brainCells(aba_marker_expression, nMarker = 50) kable(head(ct_res)) ## ---- fig.width = 7, fig.height = 7, message = FALSE, warning = FALSE--------- cor_mic = cor.test(ct_res[, "mic"], as.numeric(aba_pheno_data$ihc_iba1_ffpe), method = "spearman") print(cor_mic) cor_ast = cor.test(ct_res[, "ast"], as.numeric(aba_pheno_data$ihc_gfap_ffpe), method = "spearman") print(cor_ast) ## ---- message = FALSE--------------------------------------------------------- ct_res = brainCells(aba_marker_expression, nMarker = 50, species = "combined", method = "PCA") kable(head(ct_res)) ## ---- message = FALSE--------------------------------------------------------- ct_res = brainCells(aba_marker_expression, nMarker = 50, species = "combined", celltypes = c("ast", "neu", "oli")) kable(head(ct_res)) ## ---- message = FALSE--------------------------------------------------------- ct_res = brainCells(aba_marker_expression, nMarker = 50, data_set = "kelley") kable(head(ct_res)) ## ---- message = FALSE--------------------------------------------------------- ct_res_mckenzie = brainCells(aba_marker_expression, nMarker = 50, data_set = "mckenzie", species = "human") ct_res_kelley = brainCells(aba_marker_expression, nMarker = 50, data_set = "kelley") cell_types_compare = colnames(ct_res_kelley) for(i in 1:length(cell_types_compare)){ cor_res = cor.test(ct_res_mckenzie[ , cell_types_compare[i]], ct_res_kelley[ , cell_types_compare[i]], method = "spearman") df_compare_cor = data.frame(Cell = cell_types_compare[i], Rho = cor_res$estimate, PVal = cor_res$p.value) if(i ==1) df_compare_cor_tot = df_compare_cor if(i > 1) df_compare_cor_tot = rbind(df_compare_cor_tot, df_compare_cor)} kable(df_compare_cor_tot) ## ---- message = FALSE, echo = FALSE------------------------------------------- print(unique(unlist(lapply(strsplit(unique(kelley_df_brain$cell)[-c(1, 2, 3, 4)], "_"), "[[", 1)))) ## ---- fig.width = 6, fig.height = 5, message = FALSE, warning = FALSE--------- str(markers_df_brain) ct_res = findCells(aba_marker_expression, markers = markers_df_brain, nMarker = 50) kable(head(ct_res)) ## ---- fig.width = 6, fig.height = 5, message = FALSE, warning = FALSE--------- brain_cells_adjusted = adjustBrainCells(aba_marker_expression, nMarker = 50, species = "combined") expression_data_adj = brain_cells_adjusted$expression ## ---- fig.width = 6, fig.height = 5, message = FALSE, warning = FALSE--------- cor.test(as.numeric(aba_marker_expression["AIF1", ]), as.numeric(aba_pheno_data$ihc_iba1_ffpe), method = "spearman") cor.test(expression_data_adj["AIF1", ], as.numeric(aba_pheno_data$ihc_iba1_ffpe), method = "spearman") cor.test(as.numeric(aba_marker_expression["GFAP", ]), as.numeric(aba_pheno_data$ihc_gfap_ffpe), method = "spearman") cor.test(expression_data_adj["GFAP", ], as.numeric(aba_pheno_data$ihc_gfap_ffpe), method = "spearman")