## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(BayesLN) ## ----------------------------------------------------------------------------- # Load dataset data("EPA09") # Bayes estimator under relative quadratic loss and optimal prior setting LN_Mean(x = EPA09, x_transf = FALSE, method = "optimal", CI = FALSE) ## ----------------------------------------------------------------------------- LN_Mean(x = EPA09, x_transf = FALSE, method = "weak_inf", alpha_CI = 0.05, type_CI = "UCL") ## ----------------------------------------------------------------------------- LN_Quant(x = EPA09, x_transf = FALSE, quant = 0.95, method = "optimal", CI = FALSE) ## ----------------------------------------------------------------------------- # Load data data("fatigue") # Design matrices Xtot <- cbind(1, log(fatigue$stress), log(fatigue$stress)^2) X <- Xtot[-c(1,13,22),] y <- fatigue$cycle[-c(1,13,22)] Xtilde <- Xtot[c(1,13,22),] # units to predict #Estimation LN_MeanReg(y = y, X = X, Xtilde = Xtilde, method = "weak_inf", y_transf = FALSE) ## ----------------------------------------------------------------------------- # Load the dataset included in the package data("ReadingTime") # Define data.frame containing the covariate patterns to investigate data_pred_new <- expand.grid(so=c(-1,1), subj=factor(12), item=factor(8)) # Model estimation Mod_est_RT <- LN_hierarchical(formula_lme = log_rt ~ so +(1|subj)+(1|item), data_lme = ReadingTime, data_pred = data_pred_new, functional = c("Marginal", "Subject"), nsamp = 25000, burnin = 5000, n_thin = 5) ## ----------------------------------------------------------------------------- # Prior parameters Mod_est_RT$par_prior ## ---- fig.width = 6.5--------------------------------------------------------- # coda package library(coda) # Traceplots model parameters oldpar <- par(mfrow=c(2,3)) traceplot(Mod_est_RT$samples$par[, 1:6]) par(oldpar) ## ----------------------------------------------------------------------------- # Posterior summaries Mod_est_RT$summaries$marg Mod_est_RT$summaries$subj