## ----------------------------------------------------------------------------- R <- matrix(c(1,-1,0,0,1,-1), nrow = 2, byrow = TRUE) mu <- c(.4, .2, 0) R mu R %*% mu (R %*% mu) > 0 ## ---- eval = FALSE------------------------------------------------------------ # h1 <- matrix(c(1,-1,0,0,1,-1), nrow= 2, byrow= TRUE) # h2 <- 'c' # m1 <- c(.4,.2,0) # m2 <- c(.2,0,.1) # bayes_power(40, m1, m2, h1, h2) ## ---- eval = FALSE------------------------------------------------------------ # h1 <- matrix(c(1,-1,0,0,0,1,-1,0,0,0,1,-1), nrow= 3, byrow= TRUE) # h2 <- matrix(c(0,-1,1,0,0,1,0,-1,-1,0,0,1), nrow = 3, byrow= TRUE) # m1 <- c(.7,.3,.1,0) # m2 <- c(0,.4,.5,.1) # bayes_power(34, h1, h2, m1, m2, bound1 = 3, bound2 = 1/3) ## ---- eval = FALSE------------------------------------------------------------ # h1 <- matrix(c(1, -1, 0, # 0, 1, -1), # nrow= 2, byrow= TRUE) # h2 <- 'c' # m1 <- c(.4, .2, 0) # m2 <- c(.2, 0, .1) # bayes_sampsize(h1, h2, m1, m2, type = "de", cutoff = .125) ## ---- eval = FALSE------------------------------------------------------------ # h1 <- matrix(c(1, -1, 0, 0, # 0, 1, -1, 0, # 0, 0, 1, -1), # nrow= 3, byrow= TRUE) # h2 <- matrix(c(0, -1, 1, 0, # 0, 1, 0, -1, # -1, 0, 0, 1), # nrow = 3, byrow= TRUE) # m1 <- c(.7, .3, .1, 0) # m2 <- c(0, .4, .5, .1) # bayes_sampsize(h1, h2, m1, m2, type = "aoi", cutoff = .2, minss = 2, maxss = 500) ## ---- eval = FALSE------------------------------------------------------------ # h1 <- matrix(c(1, -1, 0, 0, # 0, 1, -1, 0, # 0, 0, 1, -1), # nrow= 3, byrow= TRUE) # h2 <- 'u' # m1 <- c(.3, .2, 0) # m2 <- c(0, 0, 0) # bayes_sampsize(h1, h2, m1, m2, type = "med.1", cutoff = 3, minss = 2, maxss = 500)