## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- library(Bioi) # Generate two data sets to simulate 3D PALM data. set.seed(10) mOne <- as.matrix(data.frame( x = rnorm(10), y = rbinom(10, 100, 0.5), z = runif(10) )) mTwo <- as.matrix(data.frame( x = rnorm(20), y = rbinom(20, 100, 0.5), z = runif(20) )) # Get separation distances. find_min_dists(mOne, mTwo) ## ----------------------------------------------------------------------------- # Generate random data. set.seed(10) input <- as.matrix(data.frame(x=rnorm(10),y=rnorm(10))) # Perform clustering. groups <- euclidean_linker(input, 0.8) print(groups) ## ----eval=FALSE--------------------------------------------------------------- # library(ggplot2) # input <- as.data.frame(input) # input$group <- as.character(groups) # ggplot(input, aes(x, y, colour = group)) + geom_point(size = 3) ## ----------------------------------------------------------------------------- # Generate a random matrix. set.seed(10) mat <- matrix(runif(70), nrow = 7) # Arbitrarily say that everything below 0.8 is background. logical_mat <- mat > 0.8 # Row names and column names are preserved in the output of find_blobs rownames(logical_mat) <- letters[1:7] colnames(logical_mat) <- 1:10 # Find blobs find_blobs(logical_mat)