## ----setup, include=FALSE------------------------------------------------ knitr::opts_chunk$set(echo = TRUE, message=FALSE) library(BlockCov) set.seed(516) ## ---- , eval =FALSE------------------------------------------------------ # devtools::install_github("Marie-PerrotDockes/BlockCov") ## ------------------------------------------------------------------------ q <- 100 Sigma <- Simu_Sigma(q = q, diag = FALSE, equal = TRUE) ## ----fig0, fig.cap="\\label{fig:fig0}",fig.width=3.5,fig.height=3.5,echo=FALSE---- Matrix::image(Sigma) ## ------------------------------------------------------------------------ n <- 30 E <- matrix(rnorm(n * q), ncol = q) %*% chol(as.matrix(Sigma)) ## ------------------------------------------------------------------------ k <- 5 nb_nn0 <- sum(Sigma[upper.tri(Sigma, diag = FALSE)] != 0) res_known <- Sigma_estimation(E, k = k, nb_nn0 = nb_nn0) ## ----fig1, fig.cap="\\label{fig:fig1}",fig.width=3.5,fig.height=3.5------ Matrix::image(res_known$Sigma_est) ## ----fig2, fig.cap="\\label{fig:fig2}",fig.width=3.5,fig.height=3.5------ Matrix::image(Matrix::Matrix(cor(E))) ## ----warning=FALSE------------------------------------------------------- res <-Sigma_estimation(E, method_k = "Cattell", method_0 = "Elbow") ## ---- eval = FALSE------------------------------------------------------- # res <-Sigma_estimation(E) ## ------------------------------------------------------------------------ res_pabl <- Sigma_estimation(E, method_k = "PA", method_0 = "BL") ## ----fig3, fig.cap="\\label{fig:fig3}",fig.width=3.5,fig.height=3.5------ Matrix::image(res$Sigma_est) ## ----fig3pabl, fig.cap="\\label{fig:fig3pabl}",fig.width=3.5,fig.height=3.5---- Matrix::image(res_pabl$Sigma_est) ## ------------------------------------------------------------------------ res_both <- Sigma_estimation(E, method_k = "Cattell", method_0 = "Elbow", inv_12 = TRUE) ## ------------------------------------------------------------------------ samp <- sample(1:q, q, replace = FALSE) Sigma_samp <- Sigma[samp, samp] ## ----fig4, fig.cap="\\label{fig:fig4}",fig.width=3.5,fig.height=3.5------ Matrix::image(Sigma_samp) ## ------------------------------------------------------------------------ E <- matrix(rnorm(n * q), ncol = q) %*% chol(as.matrix(Sigma_samp)) res_samp <- Sigma_estimation(E, reorder = TRUE, inv_12 = TRUE) ## ----fig5, fig.cap="\\label{fig:fig5}",fig.width=3.5,fig.height=3.5------ Matrix::image(res_samp$Sigma_est) ## ----fig6, fig.cap="\\label{fig:fig6}",fig.width=3.5,fig.height=3.5------ ord <- res_samp$order Matrix::image(res_samp$Sigma_est[ord, ord]) ## ----fig7, fig.cap="\\label{fig:fig7}",fig.width=3.5,fig.height=3.5------ Matrix::image(Sigma_samp[ord, ord]) ## ----fig8, fig.cap="\\label{fig:fig8}",fig.width=3.5,fig.height=3.5------ Matrix::image(res_samp$S_inv_12 %*% Sigma_samp %*%res_samp$S_inv_12)