## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width=7, fig.height=5 ) ## ----setup-------------------------------------------------------------------- library(CIARA) required <- c("Seurat") if (!all(unlist(lapply(required, function(pkg) requireNamespace(pkg, quietly = TRUE))))) knitr::opts_chunk$set(eval = FALSE) ## ----------------------------------------------------------------------------- umap_elmir <- readRDS(system.file("extdata", "annot_umap.rds", package = "CIARA")) coordinate_umap_human <- umap_elmir[, 2:3] ## ---- eval = FALSE------------------------------------------------------------ # human_data_seurat <- cluster_analysis_integrate_rare(raw_counts_human_data, "Human_data", 0.1, 5, 30) # # ## ---- eval = FALSE------------------------------------------------------------ # # norm_human_data <- as.matrix(Seurat::GetAssayData(human_data_seurat, slot = "data", assay = "RNA")) # # knn_human_data <- as.matrix(human_data_seurat@graphs$RNA_nn) # # # # ## ----------------------------------------------------------------------------- original_cluster_human <- as.vector(umap_elmir$cluster_id) names(original_cluster_human) <- names(umap_elmir$cell_name) plot_umap(coordinate_umap_human, original_cluster_human) ## ---- eval = FALSE------------------------------------------------------------ # background <- get_background_full(norm_human_data, threshold = 1, n_cells_low = 3, n_cells_high = 20) # result <- CIARA(norm_human_data, knn_human_data, background, cores_number = 1, p_value = 0.001, odds_ratio = 2, local_region = 1, approximation = FALSE) ## ----------------------------------------------------------------------------- load(system.file("extdata", "result.Rda", package = "CIARA")) ## ----------------------------------------------------------------------------- ciara_genes <- row.names(result)[result[, 1]<1] ciara_genes_top <- row.names(result)[order(as.numeric(result[, 1]))] ## ---- eval = FALSE------------------------------------------------------------ # norm_human_data_ciara <- norm_human_data[ciara_genes, ] ## ----------------------------------------------------------------------------- load(system.file("extdata", "norm_human_data_ciara.Rda", package = "CIARA")) ## ----------------------------------------------------------------------------- p <- list() for(i in (ciara_genes_top)[1:5]) { q <- plot_gene(norm_human_data_ciara, coordinate_umap_human, i, i) p <- list(p, q) } p ## ----------------------------------------------------------------------------- background <- row.names(result) ## ----------------------------------------------------------------------------- plot_genes_sum(coordinate_umap_human, norm_human_data_ciara, (ciara_genes), "Sum from top CIARA genes") ## ----------------------------------------------------------------------------- norm_counts_small <- apply(norm_human_data_ciara, 1, function(x) { y <- x/sum(x) return(y) }) gene_sum <- apply(norm_counts_small, 1, sum) genes_name_text <- selection_localized_genes(norm_human_data_ciara, ciara_genes, min_number_cells = 4, max_number_genes = 4) colnames(coordinate_umap_human) <- c("UMAP_1", "UMAP_2") if ((requireNamespace("plotly", quietly = TRUE))) { plot_interactive(coordinate_umap_human, gene_sum, genes_name_text, min_x = NULL, max_x = NULL, min_y = NULL, max_y = NULL) } ## ---- eval = FALSE------------------------------------------------------------ # human_data_ciara <- cluster_analysis_integrate_rare(raw_counts_human_data, "Elmir data", 0.01, 5, 30, (ciara_genes)) # ## ---- eval = FALSE------------------------------------------------------------ # if ((requireNamespace("clustree", quietly = TRUE))) { # find_resolution(human_data_ciara, seq(0.01, 1, 0.1)) # } ## ---- eval = FALSE------------------------------------------------------------ # ciara_cluster_human <- human_data_ciara$RNA_snn_res.0.01 ## ----------------------------------------------------------------------------- load(system.file("extdata", "ciara_cluster_human.Rda", package = "CIARA")) ## ----------------------------------------------------------------------------- plot_umap(coordinate_umap_human, ciara_cluster_human) plot_gene(norm_human_data_ciara, coordinate_umap_human, "NANOS3", "NANOS3") plot_gene(norm_human_data_ciara, coordinate_umap_human, "NANOG", "NANOG") plot_gene(norm_human_data_ciara, coordinate_umap_human, "DPPA5", "DPPA5") ## ----------------------------------------------------------------------------- final_cluster_human <- merge_cluster(original_cluster_human, ciara_cluster_human, 10) ## ----------------------------------------------------------------------------- final_cluster_human[final_cluster_human == "2-step_2"] <- "PGC" ## ----------------------------------------------------------------------------- plot_umap(coordinate_umap_human, final_cluster_human) ## ---- eval = FALSE------------------------------------------------------------ # # result_test <- test_hvg(raw_counts_human_data, final_cluster_human, (ciara_genes), background, 100, 0.05) # ## ---- eval = FALSE------------------------------------------------------------ # result_test[[2]] ## ---- eval = FALSE------------------------------------------------------------ # # raw_endoderm <- raw_counts_human_data[, as.vector(umap_elmir$cluster_id) == "Endoderm"] # raw_hemo <- raw_counts_human_data[, as.vector(umap_elmir$cluster_id) == "Hemogenic Endothelial Progenitors"] # raw_exe_meso <- raw_counts_human_data[, as.vector(umap_elmir$cluster_id) == "ExE Mesoderm"] # # # # combined_endoderm <- cluster_analysis_sub(raw_endoderm, 0.2, 5, 30, "Endoderm") # # combined_hemo <- cluster_analysis_sub(raw_hemo, 0.6, 5, 30, "Hemogenic Endothelial Progenitors") # # combined_exe_meso <- cluster_analysis_sub(raw_exe_meso, 0.5, 5, 30, "ExE Mesoderm") # # # # # ## ---- eval = FALSE------------------------------------------------------------ # # all_sub_cluster <- c(combined_endoderm$seurat_clusters, combined_hemo$seurat_clusters, combined_exe_meso$seurat_clusters) # final_cluster_human_version_sub <- merge_cluster(final_cluster_human, all_sub_cluster) ## ----------------------------------------------------------------------------- load(system.file("extdata", "final_cluster_human_version_sub.Rda", package = "CIARA")) ## ----------------------------------------------------------------------------- plot_umap(coordinate_umap_human, final_cluster_human_version_sub) ## ----------------------------------------------------------------------------- table(as.vector(final_cluster_human_version_sub)) ## ---- eval = FALSE------------------------------------------------------------ # Seurat::DefaultAssay(human_data_seurat) <- "RNA" # markers_human_final <- markers_cluster_seurat(human_data_seurat, final_cluster_human_version_sub, names(human_data_seurat$RNA_snn_res.0.1), 5) # # markers_human_top_final <- markers_human_final[[1]] # markers_human_all_final <- markers_human_final[[3]] ## ---- eval = FALSE------------------------------------------------------------ # white_black_markers <- white_black_markers(final_cluster_human_version_sub, "Hemogenic Endothelial Progenitors_4", norm_human_data, markers_human_all_final, 0) # sum(white_black_markers) # ## ---- eval = FALSE------------------------------------------------------------ # white_black_markers <- white_black_markers(final_cluster_human_version_sub, "Endoderm_2", norm_human_data, markers_human_all_final, 0) # sum(white_black_markers) ## ---- eval = FALSE------------------------------------------------------------ # white_black_markers <- white_black_markers(final_cluster_human_version_sub, "ExE Mesoderm_0", norm_human_data, markers_human_all_final, 0) # sum(white_black_markers) ## ---- eval = FALSE------------------------------------------------------------ # # top_endo <- white_black_markers(final_cluster_human_version_sub, "Endoderm_2", norm_human_data, markers_human_all_final, 0) # top_endo <- names(top_endo)[top_endo] # # # mean_top_endo <- apply(norm_human_data[top_endo, final_cluster_human_version_sub == "Endoderm_2"], 1, mean) # mean_top_endo <- sort(mean_top_endo, decreasing = T) # # top_endo <- names(mean_top_endo) # names(top_endo) <- rep("Endoderm_2", length(top_endo)) # ## ---- eval = FALSE------------------------------------------------------------ # # top_hemo <- white_black_markers(final_cluster_human_version_sub, "Hemogenic Endothelial Progenitors_4", norm_human_data, markers_human_all_final, 0) # top_hemo <- names(top_hemo)[top_hemo] # # # mean_top_hemo <- apply(norm_human_data[top_hemo, final_cluster_human_version_sub == "Hemogenic Endothelial Progenitors_4"], 1, mean) # mean_top_hemo <- sort(mean_top_hemo, decreasing = T) # # top_hemo <- names(mean_top_hemo) # names(top_hemo) <- rep("Hemogenic Endothelial Progenitors_4", length(top_hemo)) ## ---- eval = FALSE------------------------------------------------------------ # top_meso <- white_black_markers(final_cluster_human_version_sub, "ExE Mesoderm_1", norm_human_data, markers_human_all_final, 0) # top_meso <- names(top_meso)[top_meso] # # # mean_top_meso <- apply(norm_human_data[top_meso, final_cluster_human_version_sub == "ExE Mesoderm_1"], 1, mean) # mean_top_meso <- sort(mean_top_meso, decreasing = T) # # top_meso <- names(mean_top_meso) # names(top_meso) <- rep("ExE Mesoderm_1", length(top_meso)) # # # ## ---- eval = FALSE------------------------------------------------------------ # norm_human_data_plot <- norm_human_data[c(top_endo, top_hemo, top_meso), ] ## ----------------------------------------------------------------------------- load(system.file("extdata", "norm_human_data_plot.Rda", package = "CIARA")) load(system.file("extdata", "top_meso.Rda", package = "CIARA")) load(system.file("extdata", "top_endo.Rda", package = "CIARA")) load(system.file("extdata", "top_hemo.Rda", package = "CIARA")) ## ----------------------------------------------------------------------------- toMatch <- c("Endoderm") plot_balloon_marker(norm_human_data_plot[, grep(paste(toMatch, collapse="|"), final_cluster_human)], final_cluster_human_version_sub[grep(paste(toMatch, collapse="|"), final_cluster_human)], top_endo, 20, max_size=5, text_size=10) toMatch <- c("Hemogenic Endothelial Progenitors") plot_balloon_marker(norm_human_data_plot[, grep(paste(toMatch, collapse = "|"), final_cluster_human)], final_cluster_human_version_sub[grep(paste(toMatch, collapse = "|"), final_cluster_human)], top_hemo, 20, max_size = 5, text_size = 8) toMatch <- c("ExE Mesoderm") plot_balloon_marker(norm_human_data_plot[, grep(paste(toMatch, collapse = "|"), final_cluster_human)], final_cluster_human_version_sub[grep(paste(toMatch, collapse = "|"), final_cluster_human)], top_meso, length(top_meso), max_size = 5, text_size = 8) ## ----------------------------------------------------------------------------- plot_gene(norm_human_data_ciara, coordinate_umap_human, "C1R", "C1R") plot_gene(norm_human_data_ciara, coordinate_umap_human, "NANOS3", "NANOS3") plot_gene(norm_human_data_ciara, coordinate_umap_human, "NANOG", "NANOG") plot_gene(norm_human_data_ciara, coordinate_umap_human, "SOX17", "SOX17") plot_gene(norm_human_data_ciara, coordinate_umap_human, "DPPA5", "DPPA5") plot_gene(norm_human_data_ciara, coordinate_umap_human, "CSF1", "CSF1") ## ----------------------------------------------------------------------------- utils::sessionInfo()