## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(COINr) # build example up to normalised data set coin <- build_example_coin(up_to = "Normalise") ## ----------------------------------------------------------------------------- # aggregate normalised data set coin <- Aggregate(coin, dset = "Normalised") ## ----------------------------------------------------------------------------- dset_aggregated <- get_dset(coin, dset = "Aggregated") nc <- ncol(dset_aggregated) # view aggregated scores (last 11 columns here) dset_aggregated[(nc - 10) : nc] |> head(5) |> signif(3) ## ----------------------------------------------------------------------------- coin <- Normalise(coin, dset = "Treated", global_specs = list(f_n = "n_minmax", f_n_para = list(l_u = c(1,100)))) ## ----------------------------------------------------------------------------- coin <- Aggregate(coin, dset = "Normalised", f_ag = "a_gmean") ## ----------------------------------------------------------------------------- # ms_installed <- requireNamespace("matrixStats", quietly = TRUE) # ms_installed # ci_installed <- requireNamespace("Compind", quietly = TRUE) # ci_installed ## ---- eval=F------------------------------------------------------------------ # # RESTORE above eval=ms_installed # # load matrixStats package # # library(matrixStats) # # # # # aggregate using weightedMedian() # # coin <- Aggregate(coin, dset = "Normalised", # # f_ag = "weightedMedian", # # f_ag_para = list(na.rm = TRUE)) ## ---- eval= F----------------------------------------------------------------- # # RESTORE ABOVE eval= ci_installed # # # NOTE: this chunk disabled - see comments above. # # # load Compind # # suppressPackageStartupMessages(library(Compind)) # # # # # wrapper to get output of interest from ci_bod # # # also suppress messages about missing values # # ci_bod2 <- function(x){ # # suppressMessages(Compind::ci_bod(x)$ci_bod_est) # # } # # # # # aggregate # # coin <- Aggregate(coin, dset = "Normalised", # # f_ag = "ci_bod2", by_df = TRUE, w = "none") ## ----------------------------------------------------------------------------- # data with all NAs except 1 value x <- c(NA, NA, NA, 1, NA) mean(x) mean(x, na.rm = TRUE) ## ----------------------------------------------------------------------------- df1 <- data.frame( i1 = c(1, 2, 3), i2 = c(3, NA, NA), i3 = c(1, NA, 1) ) df1 ## ----------------------------------------------------------------------------- # aggregate with arithmetic mean, equal weight and data avail limit of 2/3 Aggregate(df1, f_ag = "a_amean", f_ag_para = list(w = c(1,1,1)), dat_thresh = 2/3) ## ----------------------------------------------------------------------------- coin <- Aggregate(coin, dset = "Normalised", f_ag = c("a_amean", "a_gmean", "a_amean")) ## ----------------------------------------------------------------------------- # get some indicator data - take a few columns from built in data set X <- ASEM_iData[12:15] # normalise to avoid zeros - min max between 1 and 100 X <- Normalise(X, global_specs = list(f_n = "n_minmax", f_n_para = list(l_u = c(1,100)))) # aggregate using harmonic mean, with some weights y <- Aggregate(X, f_ag = "a_hmean", f_ag_para = list(w = c(1, 1, 2, 1))) cbind(X, y) |> head(5) |> signif(3) ## ----------------------------------------------------------------------------- # build example purse up to normalised data set purse <- build_example_purse(up_to = "Normalise", quietly = TRUE) # aggregate using defaults purse <- Aggregate(purse, dset = "Normalised")