## ----setup, include=FALSE--------------------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) options(width = 90) ## --------------------------------------------------------------------------------------- #install.packages('ClussCluster') library(ClussCluster) ## --------------------------------------------------------------------------------------- data(Hou_sim) hou.dat <- Hou_sim$x dim(hou.dat) hou.dat[1:10, 1:5] ## --------------------------------------------------------------------------------------- Hou_sim$groups table(Hou_sim$y) ## --------------------------------------------------------------------------------------- Hou_sim$gnames[1:10] Hou_sim$snames ## --------------------------------------------------------------------------------------- data(Hou_sim) hou.dat <- Hou_sim$x ## --------------------------------------------------------------------------------------- run.ft <- filter_gene(hou.dat, minmean=1.0, n0prop=0.2, minsd=1.5) dat.ft <- run.ft$dat.ft dim(dat.ft) ## --------------------------------------------------------------------------------------- dat.ft[1:10, 1:5] ## --------------------------------------------------------------------------------------- summary(apply(dat.ft!=0, 1, mean)) summary(apply(dat.ft, 1, mean)) summary(apply(dat.ft, 1, sd)) ## --------------------------------------------------------------------------------------- run.gap <- ClussCluster_Gap(dat.ft, B=5, nclust = 3, ws = c(2.4, 3.1, 3.8)) ## --------------------------------------------------------------------------------------- print_ClussCluster_Gap(run.gap) ## --------------------------------------------------------------------------------------- s <- run.gap$onesd.bestw s ## ---- message=FALSE--------------------------------------------------------------------- i<- match(run.gap$onesd.bestw, c(2.4, 3.1, 3.8)) run.cc <- run.gap$run[[i]] run.cc <- ClussCluster(dat.ft, nclust = 3, ws = run.gap$onesd.bestw) ## --------------------------------------------------------------------------------------- theta <- run.cc$theta table(Hou_sim$y, theta) ## --------------------------------------------------------------------------------------- print_ClussCluster(run.cc) ## --------------------------------------------------------------------------------------- wt.mat <- run.cc$w head(wt.mat, 10) ## --------------------------------------------------------------------------------------- sig_index <- apply(wt.mat, 2, function(w) which(w!=0)) sig_names <- apply(wt.mat, 2, function(w) rownames(dat.ft)[which(w!=0)]) sig_names ## --------------------------------------------------------------------------------------- top_5_genes <- apply(wt.mat, 2, function(w) rownames(dat.ft)[order(w, decreasing = T)[1:5]]) top_5_genes ## ---- fig.width=6,fig.height=4---------------------------------------------------------- plot_ClussCluster_Gap(run.gap) ## ---- fig.width=6,fig.height=4---------------------------------------------------------- plot_ClussCluster(run.gap$run) ## ---- fig.width=6,fig.height=4---------------------------------------------------------- plot_ClussCluster(run.cc, m = 5, snames=Hou_sim$snames, gnames=rownames(dat.ft))