## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = identical(tolower(Sys.getenv("NOT_CRAN")), "true") ) ## ----IDEAM table, echo = FALSE------------------------------------------------ # tags <- c( # "TSSM_CON", "THSM_CON", "TMN_CON", "TMX_CON", "TSTG_CON", "HR_CAL", # "HRHG_CON", "TV_CAL", "TPR_CAL", "PTPM_CON", "PTPG_CON", "EVTE_CON", # "FA_CON", "NB_CON", "RCAM_CON", "BSHG_CON", "VVAG_CON", "DVAG_CON", # "VVMXAG_CON", "DVMXAG_CON" # ) # variable <- c( # "Dry-bulb Temperature", "Wet-bulb Temperature", # "Minimum Temperature", "Maximum Temperature", # "Dry-bulb Temperature (Termograph)", "Relative Humidity", # "Relative Humidity (Hydrograph)", "Vapour Pressure", "Dew Point", # "Precipitation (Daily)", "Precipitation (Hourly)", "Evaporation", # "Atmospheric Phenomenon", "Cloudiness", "Wind Trajectory", # "Sunshine Duration", "Wind Speed", "Wind Direction", # "Maximum Wind Speed", "Maximum Wind Direction" # ) # # IDEAM_tags <- data.frame( # Tags = tags, Variable = variable, # stringsAsFactors = FALSE # ) # knitr::kable(IDEAM_tags) ## ----library imports, results = "hide", warning = FALSE, message = FALSE------ # library(ColOpenData) # library(dplyr) # library(sf) # library(leaflet) # library(ggplot2) ## ----polygon creation--------------------------------------------------------- # lat <- c(4.263744, 4.263744, 4.078156, 4.078156, 4.263744) # lon <- c(-75.042067, -74.777022, -74.777022, -75.042067, -75.042067) # polygon <- st_polygon(x = list(cbind(lon, lat))) %>% st_sfc() # roi <- st_as_sf(polygon) ## ----polygon plot------------------------------------------------------------- # leaflet(roi) %>% # addProviderTiles("OpenStreetMap") %>% # addPolygons( # stroke = TRUE, # weight = 2, # color = "#2e6930", # fillColor = "#2e6930", # opacity = 0.6 # ) ## ----stations in roi---------------------------------------------------------- # stations <- stations_in_roi(geometry = roi) # # head(stations) ## ----stations filtered-------------------------------------------------------- # cw_stations <- stations %>% # filter( # as.Date(fecha_suspension) > as.Date("2013-01-01") | estado == "Activa", # categoria %in% c("Climática Principal", "Climática Ordinaria") # ) # # head(cw_stations) ## ----download climate stations------------------------------------------------ # tssm_stations <- download_climate_stations( # stations = cw_stations, # start_date = "2013-01-01", # end_date = "2016-12-31", # tag = "TSSM_CON" # ) # # head(tssm_stations) ## ----plot temperatures stations----------------------------------------------- # ggplot(data = tssm_stations) + # geom_line(aes(x = date, y = value, group = station), color = "#106ba0") + # ggtitle("Dry-bulb Temperature in Espinal by station") + # xlab("Date") + # ylab("Temperature [°C]") + # facet_grid(rows = vars(station)) + # theme_minimal() + # theme( # plot.background = element_rect(fill = "white", colour = "white"), # panel.background = element_rect(fill = "white", colour = "white"), # plot.title = element_text(hjust = 0.5) # ) ## ----plot monthly------------------------------------------------------------- # tssm_month <- tssm_stations %>% aggregate_climate(frequency = "month") # # ggplot(data = tssm_month) + # geom_line(aes(x = date, y = value, group = station), color = "#106ba0") + # ggtitle("Dry-bulb Temperature in Espinal by station") + # xlab("Date") + # ylab("Dry-bulb temperature [C]") + # facet_grid(rows = vars(station)) + # theme_minimal() + # theme( # plot.background = element_rect(fill = "white", colour = "white"), # panel.background = element_rect(fill = "white", colour = "white"), # plot.title = element_text(hjust = 0.5) # ) ## ----download climate data, eval = FALSE-------------------------------------- # tssm_roi <- download_climate_geom( # geometry = roi, # start_date = "2013-01-01", # end_date = "2016-12-31", # tag = "TSSM_CON" # ) %>% aggregate_climate(frequency = "month") ## ----municipality code-------------------------------------------------------- # espinal_code <- name_to_code_mun("Tolima", "Espinal") # espinal_code ## ----download climate mpio, eval = FALSE-------------------------------------- # tssm_mpio <- download_climate( # code = espinal_code, # start_date = "2013-01-01", # end_date = "2016-12-31", # tag = "TMX_CON" # ) %>% aggregate_climate(frequency = "month")