## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = identical(tolower(Sys.getenv("NOT_CRAN")), "true") ) ## ----IDEAM table, echo = FALSE------------------------------------------------ # tags <- c( # "TSSM_CON", "THSM_CON", "TMN_CON", "TMX_CON", "TSTG_CON", "HR_CAL", # "HRHG_CON", "TV_CAL", "TPR_CAL", "PTPM_CON", "PTPG_CON", "EVTE_CON", # "FA_CON", "NB_CON", "RCAM_CON", "BSHG_CON", "VVAG_CON", "DVAG_CON", # "VVMXAG_CON", "DVMXAG_CON" # ) # variable <- c( # "Dry-bulb Temperature", "Wet-bulb Temperature", # "Minimum Temperature", "Maximum Temperature", # "Dry-bulb Temperature (Termograph)", "Relative Humidity", # "Relative Humidity (Hydrograph)", "Vapour Pressure", "Dew Point", # "Precipitation (Daily)", "Precipitation (Hourly)", "Evaporation", # "Atmospheric Phenomenon", "Cloudiness", "Wind Trajectory", # "Sunshine Duration", "Wind Speed", "Wind Direction", # "Maximum Wind Speed", "Maximum Wind Direction" # ) # # IDEAM_tags <- data.frame( # Tags = tags, Variable = variable, # stringsAsFactors = FALSE # ) # knitr::kable(IDEAM_tags) ## ----setup-------------------------------------------------------------------- # library(ColOpenData) ## ----list datasets------------------------------------------------------------ # datasets <- list_datasets(language = "EN") # # head(datasets) ## ----list demographic datasets------------------------------------------------ # demographic_datasets <- list_datasets(module = "demographic", language = "EN") # # head(demographic_datasets) ## ----list datasets with information by age------------------------------------ # age_datasets <- look_up(keywords = "age") # # head(age_datasets) ## ----list datasets with information by area and sex in demographic module----- # area_sex_datasets <- look_up( # keywords = c("area", "sex"), # module = "demographic", # logic = "and", # language = "EN" # ) # # head(area_sex_datasets) ## ----dictionary for MGNCNPV at municipalities--------------------------------- # dict_mpio <- geospatial_dictionary( # spatial_level = "municipality", # language = "EN" # ) # # head(dict_mpio) ## ----dicionary for climate data----------------------------------------------- # dict_climate <- get_climate_tags(language = "EN") # # head(dict_climate) ## ----divipola-table----------------------------------------------------------- # divipola <- divipola_table() # head(divipola) ## ----cordoba------------------------------------------------------------------ # name_to_code_dep(department_name = "Guajira") ## ----divipola tunja----------------------------------------------------------- # name_to_code_mun( # department_name = "Boyacá", # municipality_name = "Tunja" # ) ## ----tunja name--------------------------------------------------------------- # code_to_name_mun(municipality_code = "15001")