## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = identical(tolower(Sys.getenv("NOT_CRAN")), "true") ) ## ----libraries, message=FALSE, warning=FALSE, results="hide"------------------ # library(ColOpenData) # library(dplyr) # library(ggplot2) ## ----documentation, echo =TRUE------------------------------------------------ # datasets_dem <- list_datasets("demographic", "EN") # # department_datasets <- datasets_dem[datasets_dem["level"] == "department", ] # # head(department_datasets) ## ----data, echo =TRUE--------------------------------------------------------- # chosen_dataset <- download_demographic("DANE_CNPVPD_2018_14BPD") # # head(chosen_dataset) ## ----merge data, echo =TRUE--------------------------------------------------- # merged_data <- merge_geo_demographic( # demographic_dataset = # "DANE_CNPVPD_2018_14BPD" # ) # # head(merged_data) ## ----mutate------------------------------------------------------------------- # merged_data <- merged_data %>% # mutate(proportion_home_remedies = uso_remedios_caseros / # total_personas_que_tuvieron_alguna_enfermedad) ## ----plot--------------------------------------------------------------------- # ggplot(data = merged_data) + # geom_sf(mapping = aes(fill = proportion_home_remedies), color = "white") + # theme_minimal() + # theme( # plot.background = element_rect(fill = "white", colour = "white"), # panel.background = element_rect(fill = "white", colour = "white"), # panel.grid = element_blank(), # axis.text = element_blank(), # axis.ticks = element_blank(), # plot.title = element_text(hjust = 0.5) # ) + # scale_fill_gradient("Count", low = "#10bed2", high = "#deff00") + # ggtitle( # label = "Proportion of people who reported using home remedies to treat # a health problem", # subtitle = "Colombia" # )