## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = identical(tolower(Sys.getenv("NOT_CRAN")), "true") ) ## ----available datasets, echo = FALSE----------------------------------------- # level <- c( # "National", "National with sex", # "Department", "Department with Sex", # "Municipality", "Municipality with Sex", # "Municipaity with Sex and Ethnic Groups" # ) # years <- c( # "1950 - 2070", "1985 - 2050", # "1985 - 2050", "1985 - 2050", "1985 - 2035", "1985 - 2035", # "2018 - 2035" # ) # dictionary_key <- c( # "DANE_MGN_2018_DPTO", "DANE_MGN_2018_MPIO", # "DANE_MGN_2018_MPIOCL", "DANE_MGN_2018_MZN", # "DANE_MGN_2018_SECR", "DANE_MGN_2018_SECU", # "DANE_MGN_2018_SETR", "DANE_MGN_2018_SETU", # "DANE_MGN_2018_ZU" # ) # # mgncnpv <- data.frame( # Level = level, Years = years, # stringsAsFactors = FALSE # ) # knitr::kable(mgncnpv) ## ----------------------------------------------------------------------------- # library(ColOpenData) # library(dplyr) # library(ggplot2) ## ----download data------------------------------------------------------------ # asen <- download_pop_projections( # spatial_level = "national", # start_year = 2034, # end_year = 2034, # include_sex = TRUE, # include_ethnic = FALSE # ) ## ----filtered projections----------------------------------------------------- # female_2034 <- asen %>% # filter( # area == "total", # sexo == "mujer", # edad != "100_y_mas" # ) %>% # mutate(edad = as.numeric(edad)) ## ----age groups--------------------------------------------------------------- # age_groups <- cut(female_2034[["edad"]], # breaks = c(-1, 2, 12, 19, 29, 39, 49, 59, 69, 79, 89, 99), # labels = c( # "0-2", "3-12", "13-19", "20-29", "30-39", "40-49", # "50-59", "60-69", "70-79", "80-89", "90-99" # ) # ) # female_groups <- female_2034 %>% # mutate(age_group = age_groups) %>% # group_by(age_group) %>% # summarise(total_sum = sum(total)) ## ----plot population---------------------------------------------------------- # ggplot(female_groups, aes( # x = age_group, # y = total_sum # )) + # geom_bar(stat = "identity", fill = "#f04a4c", color = "black", width = 0.6) + # labs( # title = "Female population counts in Colombia by age group for 2034", # x = "Age group", # y = "Female population" # ) + # theme_minimal() + # theme( # plot.background = element_rect(fill = "white", colour = "white"), # panel.background = element_rect(fill = "white", colour = "white"), # axis.text.x = element_text(angle = 45, hjust = 1), # plot.title = element_text(hjust = 0.5) # )