## ---- include = FALSE--------------------------------------------------------- dpi = 125 knitr::opts_chunk$set( collapse = TRUE, comment = "#>", dpi=dpi, fig.retina=1, fig.width=1440/dpi, #4:3 FHD fig.height=1080/dpi, out.width="100%", crop = NULL, warning = T, error = T ) rm(dpi) ## ---- eval = FALSE------------------------------------------------------------ # install.packages("Coxmos") ## ---- eval = FALSE------------------------------------------------------------ # install.packages("devtools") # devtools::install_github("BiostatOmics/Coxmos", build_vignettes = TRUE) ## ----setup, results = "hide"-------------------------------------------------- # load Coxmos library(Coxmos) ## ---- eval=FALSE-------------------------------------------------------------- # # install.packages("RColorConesa") # library(RColorConesa) ## ----------------------------------------------------------------------------- # load dataset data("X_multiomic", package = "Coxmos") data("Y_multiomic", package = "Coxmos") X <- X_multiomic Y <- Y_multiomic rm(X_multiomic, Y_multiomic) ## ---- echo = FALSE------------------------------------------------------------ knitr::kable(X$mirna[1:5,1:5]);knitr::kable(X$proteomic[1:5,1:5]) knitr::kable(Y[1:5,]) ## ----------------------------------------------------------------------------- ggp_density.event <- plot_events(Y = Y, categories = c("Censored","Death"), #name for FALSE/0 (Censored) and TRUE/1 (Event) y.text = "Number of observations", roundTo = 0.5, max.breaks = 15) ## ----fig.small = T------------------------------------------------------------ ggp_density.event$plot ## ----------------------------------------------------------------------------- set.seed(123) index_train <- caret::createDataPartition(Y$event, p = .7, #70 % list = FALSE, times = 1) X_train <- list() X_test <- list() for(omic in names(X)){ X_train[[omic]] <- X[[omic]][index_train,,drop=F] X_test[[omic]] <- X[[omic]][-index_train,,drop=F] } Y_train <- Y[index_train,] Y_test <- Y[-index_train,] ## ----------------------------------------------------------------------------- EPV <- getEPV.mb(X_train, Y_train) for(b in names(X_train)){ message(paste0("EPV = ", round(EPV[[b]], 4), ", for block ", b)) } ## ---- message=F--------------------------------------------------------------- x.center = c(mirna = T, proteomic = T) #if vector, must be named x.scale = c(mirna = F, proteomic = F) #if vector, must be named ## ----warning=T, eval=F-------------------------------------------------------- # cv.sb.splsicox_res <- cv.sb.splsicox(X = X_train, Y = Y_train, # max.ncomp = 2, penalty.list = c(0.5,0.9), # n_run = 2, k_folds = 5, # x.center = x.center, x.scale = x.scale, # remove_near_zero_variance = T, remove_zero_variance = F, toKeep.zv = NULL, # remove_variance_at_fold_level = F, # remove_non_significant_models = F, alpha = 0.05, # w_AIC = 0, w_C.Index = 0, w_AUC = 1, w_I.BRIER = 0, times = NULL, max_time_points = 15, # MIN_AUC_INCREASE = 0.01, MIN_AUC = 0.8, MIN_COMP_TO_CHECK = 3, # pred.attr = "mean", pred.method = "cenROC", fast_mode = F, # MIN_EPV = 5, return_models = F, remove_non_significant = F, returnData = F, # PARALLEL = F, verbose = F, seed = 123) # # cv.sb.splsicox_res ## ---- fig.small=T, eval=F----------------------------------------------------- # cv.sb.splsicox_res$plot_AUC ## ----------------------------------------------------------------------------- sb.splsicox_model <- sb.splsicox(X = X_train, Y = Y_train, n.comp = 1, #cv.sb.splsicox_res$opt.comp, penalty = 0.9, #cv.sb.splsicox_res$opt.penalty, x.center = x.center, x.scale = x.scale, remove_near_zero_variance = T, remove_zero_variance = F, toKeep.zv = NULL, remove_non_significant = F, alpha = 0.05, MIN_EPV = 5, returnData = T, verbose = F) sb.splsicox_model ## ----------------------------------------------------------------------------- sb.splsicox_model <- sb.splsicox(X = X_train, Y = Y_train, n.comp = 1, #cv.sb.splsicox_res$opt.comp, penalty = 0.9, #cv.sb.splsicox_res$opt.penalty, x.center = x.center, x.scale = x.scale, remove_near_zero_variance = T, remove_zero_variance = F, toKeep.zv = NULL, remove_non_significant = T, alpha = 0.05, MIN_EPV = 5, returnData = T, verbose = F) sb.splsicox_model ## ----warning=T, eval=F-------------------------------------------------------- # cv.isb.splsicox_res <- cv.isb.splsicox(X = X_train, Y = Y_train, # max.ncomp = 2, penalty.list = c(0.5,0.9), # n_run = 2, k_folds = 5, # x.center = x.center, x.scale = x.scale, # remove_near_zero_variance = T, remove_zero_variance = F, toKeep.zv = NULL, # remove_variance_at_fold_level = F, # remove_non_significant_models = F, alpha = 0.05, # w_AIC = 0, w_C.Index = 0, w_AUC = 1, w_I.BRIER = 0, times = NULL, max_time_points = 15, # MIN_AUC_INCREASE = 0.01, MIN_AUC = 0.8, MIN_COMP_TO_CHECK = 3, # pred.attr = "mean", pred.method = "cenROC", fast_mode = F, # MIN_EPV = 5, return_models = F, remove_non_significant = F, returnData = F, # PARALLEL = F, verbose = F, seed = 123) # # cv.isb.splsicox_res ## ---- fig.small=T, eval=F----------------------------------------------------- # cv.isb.splsicox_res$list_cv_spls_models$mirna$plot_AUC # cv.isb.splsicox_res$list_cv_spls_models$proteomic$plot_AUC ## ---- warning=F, eval=F------------------------------------------------------- # isb.splsicox_model <- isb.splsicox(X = X_train, Y = Y_train, cv.isb = cv.isb.splsicox_res, # x.center = x.center, x.scale = x.scale, # remove_near_zero_variance = TRUE, remove_zero_variance = TRUE, toKeep.zv = NULL, # remove_non_significant = FALSE, alpha = 0.05, # MIN_EPV = 5, returnData = TRUE, verbose = FALSE) # # isb.splsicox_model ## ---- warning=F, eval=F------------------------------------------------------- # cv.sb.splsdrcox_res <- cv.sb.splsdrcox(X = X_train, Y = Y_train, # max.ncomp = 2, vector = NULL, # n_run = 2, k_folds = 10, # x.center = x.center, x.scale = x.scale, # #y.center = FALSE, y.scale = FALSE, # remove_near_zero_variance = T, remove_zero_variance = F, toKeep.zv = NULL, # remove_variance_at_fold_level = F, # remove_non_significant_models = F, alpha = 0.05, # w_AIC = 0, w_C.Index = 0, w_AUC = 1, w_I.BRIER = 0, times = NULL, max_time_points = 15, # MIN_AUC_INCREASE = 0.01, MIN_AUC = 0.8, MIN_COMP_TO_CHECK = 3, # pred.attr = "mean", pred.method = "cenROC", fast_mode = F, # MIN_EPV = 5, return_models = F, remove_non_significant = F, returnData = F, # PARALLEL = F, verbose = F, seed = 123) # # cv.sb.splsdrcox_res ## ----------------------------------------------------------------------------- sb.splsdrcox_model <- sb.splsdrcox(X = X_train, Y = Y_train, n.comp = 2, #cv.sb.splsdrcox_res$opt.comp, vector = list("mirna" = 484, "proteomic" = 369), #cv.sb.splsdrcox_res$opt.nvar, x.center = x.center, x.scale = x.scale, remove_near_zero_variance = T, remove_zero_variance = F, toKeep.zv = NULL, remove_non_significant = T, alpha = 0.05, MIN_EPV = 5, returnData = T, verbose = F) sb.splsdrcox_model ## ----warning=T, eval=F-------------------------------------------------------- # cv.isb.splsdrcox_res <- cv.isb.splsdrcox(X = X_train, Y = Y_train, # max.ncomp = 2, vector = NULL, # n_run = 2, k_folds = 5, # x.center = x.center, x.scale = x.scale, # remove_near_zero_variance = T, remove_zero_variance = F, toKeep.zv = NULL, # remove_variance_at_fold_level = F, # remove_non_significant_models = F, alpha = 0.05, # w_AIC = 0, w_C.Index = 0, w_AUC = 1, w_I.BRIER = 0, times = NULL, max_time_points = 15, # MIN_AUC_INCREASE = 0.01, MIN_AUC = 0.8, MIN_COMP_TO_CHECK = 3, # pred.attr = "mean", pred.method = "cenROC", fast_mode = F, # MIN_EPV = 5, return_models = F, remove_non_significant = F, returnData = F, # PARALLEL = F, verbose = F, seed = 123) # # cv.isb.splsdrcox_res ## ---- fig.small=T, eval=F----------------------------------------------------- # cv.isb.splsdrcox_res$list_cv_spls_models$mirna$plot_AUC # cv.isb.splsdrcox_res$list_cv_spls_models$proteomic$plot_AUC ## ---- warning=F, eval=F------------------------------------------------------- # isb.splsdrcox_model <- isb.splsdrcox(X = X_train, Y = Y_train, cv.isb = cv.isb.splsdrcox_res, # x.center = x.center, x.scale = x.scale, # remove_near_zero_variance = TRUE, remove_zero_variance = TRUE, toKeep.zv = NULL, # remove_non_significant = FALSE, alpha = 0.05, # MIN_EPV = 5, returnData = TRUE, verbose = FALSE) # # isb.splsdrcox_model ## ---- warning=F, eval=F------------------------------------------------------- # cv.mb.splsdrcox_res <- cv.mb.splsdrcox(X = X_train, Y = Y_train, # max.ncomp = 2, vector = NULL, #NULL - autodetection # MIN_NVAR = 10, MAX_NVAR = NULL, n.cut_points = 10, EVAL_METHOD = "AUC", # n_run = 2, k_folds = 4, # x.center = x.center, x.scale = x.scale, # remove_near_zero_variance = T, remove_zero_variance = F, toKeep.zv = NULL, # remove_variance_at_fold_level = F, # remove_non_significant_models = F, alpha = 0.05, # w_AIC = 0, w_C.Index = 0, w_AUC = 1, w_I.BRIER = 0, times = NULL, max_time_points = 15, # MIN_AUC_INCREASE = 0.01, MIN_AUC = 0.8, MIN_COMP_TO_CHECK = 3, # pred.attr = "mean", pred.method = "cenROC", fast_mode = F, # MIN_EPV = 5, return_models = F, remove_non_significant = F, returnData = F, # PARALLEL = F, verbose = F, seed = 123) # # cv.mb.splsdrcox_res ## ----------------------------------------------------------------------------- mb.splsdrcox_model <- mb.splsdrcox(X = X_train, Y = Y_train, n.comp = 2, #cv.mb.splsdrcox_res$opt.comp, vector = list("mirna" = 326, "proteomic" = 369), #cv.mb.splsdrcox_res$opt.nvar, x.center = x.center, x.scale = x.scale, remove_near_zero_variance = T, remove_zero_variance = T, toKeep.zv = NULL, remove_non_significant = T, alpha = 0.05, MIN_AUC_INCREASE = 0.01, pred.method = "cenROC", max.iter = 200, times = NULL, max_time_points = 15, MIN_EPV = 5, returnData = T, verbose = F) mb.splsdrcox_model ## ---- warning=F, eval=F------------------------------------------------------- # # run cv.splsdrcox # cv.mb.splsdacox_res <- cv.mb.splsdacox(X = X_train, Y = Y_train, # max.ncomp = 2, vector = NULL, #NULL - autodetection # n_run = 2, k_folds = 4, # x.center = x.center, x.scale = x.scale, # remove_near_zero_variance = T, remove_zero_variance = F, toKeep.zv = NULL, # remove_variance_at_fold_level = F, # remove_non_significant_models = F, alpha = 0.05, # w_AIC = 0, w_C.Index = 0, w_AUC = 1, w_I.BRIER = 0, times = NULL, max_time_points = 15, # MIN_AUC_INCREASE = 0.01, MIN_AUC = 0.8, MIN_COMP_TO_CHECK = 3, # pred.attr = "mean", pred.method = "cenROC", fast_mode = F, # MIN_EPV = 5, return_models = F, remove_non_significant = F, returnData = F, # PARALLEL = F, verbose = F, seed = 123) # # cv.mb.splsdacox_res ## ----------------------------------------------------------------------------- mb.splsdacox_model <- mb.splsdacox(X = X_train, Y = Y_train, n.comp = 2, #cv.mb.splsdacox_res$opt.comp, vector = list("mirna" = 326, "proteomic" = 10), #cv.mb.splsdacox_res$opt.nvar, x.center = x.center, x.scale = x.scale, remove_near_zero_variance = T, remove_zero_variance = T, toKeep.zv = NULL, remove_non_significant = T, alpha = 0.05, MIN_AUC_INCREASE = 0.01, pred.method = "cenROC", max.iter = 200, times = NULL, max_time_points = 15, MIN_EPV = 5, returnData = T, verbose = F) mb.splsdacox_model ## ----------------------------------------------------------------------------- lst_models <- list("SB.sPLS-ICOX" = sb.splsicox_model, #"iSB.sPLS-ICOX" = isb.splsicox_model, "SB.sPLS-DRCOX-Dynamic" = sb.splsdrcox_model, #"iSB.sPLS-DRCOX-Dynamic" = isb.splsdrcox_model, #"SB.sPLS-DRCOX-Penalty" = sb.splsdrcox_penalty_model, #"iSB.sPLS-DRCOX-Penalty" = isb.splsdrcox_penalty_model, #"SB.sPLS-DACOX-Dynamic" = sb.splsdacox_model, #"iSB.sPLS-DACOX-Dynamic" = isb.splsdacox_model, "MB.sPLS-DRCOX" = mb.splsdrcox_model, "MB.sPLS-DACOX" = mb.splsdacox_model) eval_results <- eval_Coxmos_models(lst_models = lst_models, X_test = X_test, Y_test = Y_test, pred.method = "cenROC", pred.attr = "mean", times = NULL, max_time_points = 15, PARALLEL = F) ## ---- eval=FALSE-------------------------------------------------------------- # lst_evaluators <- c(cenROC = "cenROC", risksetROC = "risksetROC") # # eval_results <- purrr::map(lst_evaluators, ~eval_Coxmos_models(lst_models = lst_models, # X_test = X_test, Y_test = Y_test, # pred.method = ., # pred.attr = "mean", # times = NULL, # max_time_points = 15, # PARALLEL = F)) ## ----------------------------------------------------------------------------- eval_results ## ---- warning=F--------------------------------------------------------------- lst_eval_results <- plot_evaluation(eval_results, evaluation = "AUC") lst_eval_results_brier <- plot_evaluation(eval_results, evaluation = "IBS") ## ---- fig.small=T, warning=F-------------------------------------------------- lst_eval_results$lst_plots$lineplot.mean lst_eval_results$lst_plot_comparisons$t.test # lst_eval_results$cenROC$lst_plots$lineplot.mean # lst_eval_results$cenROC$lst_plot_comparisons$t.test ## ----------------------------------------------------------------------------- lst_models_time <- list(#cv.sb.splsicox_res, sb.splsicox_model, #isb.splsicox_model, #cv.sb.splsdrcox_res, sb.splsdrcox_model, #isb.splsdrcox_model, #cv.mb.splsdrcox_res, mb.splsdrcox_model, #cv.mb.splsdrcox_res, mb.splsdacox_model, eval_results) ## ----------------------------------------------------------------------------- ggp_time <- plot_time.list(lst_models_time, txt.x.angle = 90) ## ---- fig.small=T------------------------------------------------------------- ggp_time ## ----------------------------------------------------------------------------- #lst_forest_plot <- plot_forest.list(lst_models) lst_forest_plot <- plot_forest(lst_models$`SB.sPLS-DRCOX`) ## ---- fig.small=T------------------------------------------------------------- #lst_forest_plot$`SB.sPLS-DRCOX` lst_forest_plot ## ----------------------------------------------------------------------------- #lst_ph_ggplot <- plot_proportionalHazard.list(lst_models) lst_ph_ggplot <- plot_proportionalHazard(lst_models$`SB.sPLS-DRCOX`) ## ---- fig.small=T------------------------------------------------------------- #lst_ph_ggplot$`SB.sPLS-DRCOX` lst_ph_ggplot ## ----------------------------------------------------------------------------- #density.plots.lp <- plot_cox.event.list(lst_models, type = "lp") density.plots.lp <- plot_cox.event(lst_models$`SB.sPLS-DRCOX`, type = "lp") ## ---- fig.small=T------------------------------------------------------------- density.plots.lp$plot.density density.plots.lp$plot.histogram ## ----------------------------------------------------------------------------- ggp_scores <- plot_PLS_Coxmos(model = lst_models$`SB.sPLS-DRCOX`, comp = c(1,2), mode = "scores") ## ---- fig.small=T, warning=FALSE---------------------------------------------- ggp_scores$plot_block ## ----------------------------------------------------------------------------- ggp_loadings <- plot_PLS_Coxmos(model = lst_models$`SB.sPLS-DRCOX`, comp = c(1,2), mode = "loadings", top = 10) ## ---- fig.small=T, warning=FALSE---------------------------------------------- ggp_loadings$plot_block ## ----------------------------------------------------------------------------- ggp_biplot <- plot_PLS_Coxmos(model = lst_models$`SB.sPLS-DRCOX`, comp = c(1,2), mode = "biplot", top = 15, only_top = T) ## ---- fig.small=T, warning=FALSE---------------------------------------------- ggp_biplot$plot_block ## ---- warning=F--------------------------------------------------------------- variable_auc_results <- eval_Coxmos_model_per_variable(model = lst_models$`SB.sPLS-DRCOX`, X_test = lst_models$`SB.sPLS-DRCOX`$X_input, Y_test = lst_models$`SB.sPLS-DRCOX`$Y_input, pred.method = "cenROC", pred.attr = "mean", times = NULL, max_time_points = 15, PARALLEL = FALSE) variable_auc_plot_train <- plot_evaluation(variable_auc_results, evaluation = "AUC") ## ---- fig.small=T, warning=F-------------------------------------------------- variable_auc_plot_train$lst_plots$lineplot.mean ## ---- warning=FALSE----------------------------------------------------------- # ggp.simulated_beta <- plot_pseudobpenalty.list(lst_models = lst_models, # error.bar = T, onlySig = T, alpha = 0.05, # zero.rm = T, auto.limits = T, top = 20, # show_percentage = T, size_percentage = 2, verbose = F) ggp.simulated_beta <- plot_pseudobeta(model = lst_models$`SB.sPLS-DRCOX`, error.bar = T, onlySig = T, alpha = 0.05, zero.rm = T, auto.limits = T, top = 20, show_percentage = T, size_percentage = 2) ## ---- fig.small=T, warning=FALSE---------------------------------------------- ggp.simulated_beta$plot ## ---- fig.small=T, warning=FALSE---------------------------------------------- ggp.simulated_beta$mb_plot$plot ## ---- warning=F--------------------------------------------------------------- # LST_KM_RES_LP <- getAutoKM.list(type = "LP", # lst_models = lst_models, # comp = 1:4, # top = 10, # ori_data = T, # BREAKTIME = NULL, # only_sig = T, alpha = 0.05) LST_KM_RES_LP <- getAutoKM(type = "LP", model = lst_models$`SB.sPLS-DRCOX`, comp = 1:4, top = 10, ori_data = T, BREAKTIME = NULL, only_sig = T, alpha = 0.05) ## ---- fig.small=T, warning=FALSE---------------------------------------------- LST_KM_RES_LP$LST_PLOTS$LP ## ---- warning=FALSE----------------------------------------------------------- # lst_cutoff <- getCutoffAutoKM.list(LST_KM_RES_LP) # LST_KM_TEST_LP <- getTestKM.list(lst_models = lst_models, # X_test = X_test, Y_test = Y_test, # type = "LP", # BREAKTIME = NULL, n.breaks = 20, # lst_cutoff = lst_cutoff) lst_cutoff <- getCutoffAutoKM(LST_KM_RES_LP) LST_KM_TEST_LP <- getTestKM(model = lst_models$`SB.sPLS-DRCOX`, X_test = X_test, Y_test = Y_test, type = "LP", BREAKTIME = NULL, n.breaks = 20, cutoff = lst_cutoff) ## ---- warning=FALSE----------------------------------------------------------- LST_KM_TEST_LP ## ---- warning=F--------------------------------------------------------------- # LST_KM_RES_COMP <- getAutoKM.list(type = "COMP", # lst_models = lst_models, # comp = 1:4, # top = 10, # ori_data = T, # BREAKTIME = NULL, # only_sig = T, alpha = 0.05) LST_KM_RES_COMP <- getAutoKM(type = "COMP", model = lst_models$`SB.sPLS-DRCOX`, comp = 1:4, top = 10, ori_data = T, BREAKTIME = NULL, only_sig = T, alpha = 0.05) ## ---- fig.small=T, warning=FALSE---------------------------------------------- LST_KM_RES_COMP$LST_PLOTS$mirna$comp_2 LST_KM_RES_COMP$LST_PLOTS$proteomic$comp_1 LST_KM_RES_COMP$LST_PLOTS$proteomic$comp_2 ## ---- warning=F--------------------------------------------------------------- # lst_cutoff <- getCutoffAutoKM.list(LST_KM_RES_COMP) # LST_KM_TEST_COMP <- getTestKM.list(lst_models = lst_models, # X_test = X_test, Y_test = Y_test, # type = "COMP", # BREAKTIME = NULL, n.breaks = 20, # lst_cutoff = lst_cutoff) lst_cutoff <- getCutoffAutoKM(LST_KM_RES_COMP) LST_KM_TEST_COMP <- getTestKM(model = lst_models$`SB.sPLS-DRCOX`, X_test = X_test, Y_test = Y_test, type = "COMP", BREAKTIME = NULL, n.breaks = 20, cutoff = lst_cutoff) ## ---- fig.small=T, warning=FALSE---------------------------------------------- LST_KM_TEST_COMP$comp_2_mirna LST_KM_TEST_COMP$comp_1_proteomic LST_KM_TEST_COMP$comp_2_proteomic ## ---- warning=F--------------------------------------------------------------- # LST_KM_RES_VAR <- getAutoKM.list(type = "VAR", # lst_models = lst_models, # comp = 1:4, # top = 10, # ori_data = T, # BREAKTIME = NULL, # only_sig = T, alpha = 0.05) LST_KM_RES_VAR <- getAutoKM(type = "VAR", model = lst_models$`SB.sPLS-DRCOX`, comp = 1:4, top = 10, ori_data = T, BREAKTIME = NULL, only_sig = T, alpha = 0.05) ## ---- fig.small=T, warning=FALSE---------------------------------------------- LST_KM_RES_VAR$LST_PLOTS$mirna$hsa.minus.miR.minus.21.minus.5p LST_KM_RES_VAR$LST_PLOTS$proteomic$var_840 LST_KM_RES_VAR$LST_PLOTS$proteomic$var_7535 ## ---- warning=FALSE----------------------------------------------------------- # lst_cutoff <- getCutoffAutoKM.list(LST_KM_RES_VAR) # LST_KM_TEST_VAR <- getTestKM.list(lst_models = lst_models, # X_test = X_test, Y_test = Y_test, # type = "VAR", ori_data = T, # BREAKTIME = NULL, n.breaks = 20, # lst_cutoff = lst_cutoff) lst_cutoff <- getCutoffAutoKM(LST_KM_RES_VAR) LST_KM_TEST_VAR <- getTestKM(model = lst_models$`SB.sPLS-DRCOX`, X_test = X_test, Y_test = Y_test, type = "VAR", ori_data = T, BREAKTIME = NULL, n.breaks = 20, cutoff = lst_cutoff) ## ---- fig.small=T, warning=FALSE---------------------------------------------- LST_KM_TEST_VAR$mirna$hsa.minus.miR.minus.21.minus.5p LST_KM_TEST_VAR$proteomic$var_840 LST_KM_TEST_VAR$proteomic$var_7535 ## ----------------------------------------------------------------------------- new_pat <- list() for(b in names(X_test)){ new_pat[[b]] <- X_test[[b]][1,,drop=F] } ## ----------------------------------------------------------------------------- knitr::kable(Y_test[rownames(new_pat$mirna),]) ## ---- warning=FALSE----------------------------------------------------------- # ggp.simulated_beta_newPat <- plot_observation.pseudobeta.list(lst_models = lst_models, # observation = new_pat, # error.bar = T, onlySig = T, alpha = 0.05, # zero.rm = T, auto.limits = T, show.betas = T, top = 20) ggp.simulated_beta_newPat <- plot_observation.pseudobeta(model = lst_models$`SB.sPLS-DRCOX`, observation = new_pat, error.bar = T, onlySig = T, alpha = 0.05, zero.rm = T, auto.limits = T, show.betas = T, top = 20, txt.x.angle = 90) ## ---- fig.small=T, warning=FALSE---------------------------------------------- ggp.simulated_beta_newPat$plot$mirna ggp.simulated_beta_newPat$plot$proteomic ## ---- warning=FALSE----------------------------------------------------------- pat_density <- plot_observation.eventDensity(observation = new_pat, model = lst_models$`SB.sPLS-DRCOX`, time = NULL, type = "lp") ## ---- fig.small=T, warning=FALSE---------------------------------------------- pat_density ## ----------------------------------------------------------------------------- pat_histogram <- plot_observation.eventHistogram(observation = new_pat, model = lst_models$`SB.sPLS-DRCOX`, time = NULL, type = "lp") ## ---- fig.small=T, warning=FALSE---------------------------------------------- pat_histogram ## ----------------------------------------------------------------------------- sub_X_test <- list() for(b in names(X_test)){ sub_X_test[[b]] <- X_test[[b]][1:5,] } ## ----------------------------------------------------------------------------- knitr::kable(Y_test[rownames(sub_X_test$proteomic),]) ## ---- warning=FALSE----------------------------------------------------------- # lst_cox.comparison <- plot_multipleObservations.LP.list(lst_models = lst_models, # observations = sub_X_test, # error.bar = T, zero.rm = T, onlySig = T, # alpha = 0.05, top = 5) lst_cox.comparison <- plot_multipleObservations.LP(model = lst_models$`SB.sPLS-DRCOX`, observations = sub_X_test, error.bar = T, zero.rm = T, onlySig = T, alpha = 0.05, top = 5) ## ---- fig.small=T, warning=FALSE---------------------------------------------- lst_cox.comparison$plot