## ---- echo = TRUE, results = "hide", eval = FALSE----------------------------- # data.loader <- DatasetLoader$new() # data <- data.loader$load(filepath, header = TRUE, sep = ",", # skip.lines = 0, normalize.names = FALSE, # ignore.columns = NULL) ## ---- echo = TRUE, results = "hide", eval = FALSE----------------------------- # ## DATASET INFORMATION OBTAINER # data$getNcol() # data$getNrow() # data$getColumnNames() # data$getDataset() # # ## DATASET COLUMN REMOVAL # data$cleanData(columns = NULL, # remove.funcs = NULL, # remove.na = FALSE, # remove.const = FALSE) # # ## DATASET HANDLING AND SPLITTING # data$createPartitions(num.folds = NULL, # percent.folds = NULL, # class.balance = NULL) # subset <- data$createSubset(num.folds = NULL, # column.id = NULL, # opts = list(remove.na = TRUE, # remove.const = FALSE), # class.index = NULL, # positive.class = NULL) # train <- data$createTrain(num.folds = NULL, # class.index, # positive.class, # opts = list(remove.na = TRUE, # remove.const = FALSE)) # ## ---- echo = TRUE, results = "hide", eval = FALSE----------------------------- # ## FEATURE-CLUSTERING ALGORITHM CREATION # conf <- DependencyBasedStrategyConfiguration$new() # dbs <- DependencyBasedStrategy$new(subset, # heuristic, # configuration = conf) # # ## FEATURE-CLUSTERING ALGORITHM EXECUTION # dbs$execute(verbose = FALSE) # # ## FEATURE-CLUSTERING ALGORITHM FUNCTIONALITIES # dbs$getBestClusterDistribution() # dbs.train <- dbs$createTrain(subset, # num.clusters = NULL, # num.groups = NULL, # include.unclustered = FALSE) # ## ---- echo = TRUE, results = "hide", eval = FALSE----------------------------- # ## D2MCS FRAMEWORK INITIALIZATION # d2mcs <- D2MCS$new(dir.path, # num.cores = 2, # socket.type = "PSOCK", # outfile = NULL) # # ## MCS BEHAVIOUR CUSTOMIZATION OPTIONS # trFunction <- TwoClass$new(method, # number, # savePredictions, # classProbs, # allowParallel, # verboseIter, # seed = NULL) # # ## EXECUTION OF MCS DISCOVERY OPERATION # trained <- d2mcs$train(train.set, # train.function, # num.clusters = NULL, # model.recipe = DefaultModelFit$new(), # ex.classifiers = c(), # ig.classifiers = c(), # metrics = NULL, # saveAllModels = FALSE) # ## ---- echo = TRUE, results = "hide", eval = FALSE----------------------------- # ## VOTING SCHEMES AVAILABLE IN THE CLASSIFICATION STAGE # voting.types <- c(SingleVoting$new(voting.schemes, # metrics), # CombinedVoting$new(voting.schemes, # combined.metrics, # methodology, # metrics)) # # ## EXECUTE THE CLASSIFICATION STAGE # predictions <- d2mcs$classify(train.output, # subset, # voting.types, # positive.class = NULL) # # ## COMPUTE THE PERFORMANCE OF EACH VOTING SCHEME # predictions$getPerformances(test.set, # measures, # voting.names = NULL, # metric.names = NULL, # cutoff.values = NULL) # # ## OBTAIN THE PREDICTIONS OBTAINED OF EACH VOTING SCHEME USED # prediction$getPredictions(voting.names = NULL, # metric.names = NULL, # cutoff.values = NULL, # type = NULL, # target = NULL, # filter = FALSE) #