## ----setup, include=FALSE----------------------------------------------------- # library(rgl) # #library(rglwidget) # setupKnitr() # knitr::opts_chunk$set(echo = TRUE, # fig.align = "center", # warning = FALSE, # webgl = TRUE, # fig.width = 8, # fig.height = 8, # fig.keep = "all", # fig.ext = "jpeg" # ) ## ----fig.width=5, fig.height=5------------------------------------------------ library(DataVisualizations) data("Lsun3D") Pixelmatrix(Lsun3D$Data) ## ----------------------------------------------------------------------------- library(DataVisualizations) data(MTY) InspectVariable(MTY,'MTY') ## ----fig.width=4, fig.height=4, message=FALSE--------------------------------- library(DataVisualizations) library(ggplot2) data(ITS) data(MTY) library(vioplot) Data=cbind(ITS,MTY) #MDplot(Data)+ylim(0,6000)+ggtitle('Two Features With Adjusted Range') #MDplot(Data,Scaling = "Robust")+ggtitle('"Shape-Invariant" Normalization') #Data is now capped #Data[Data[,2]>6000,2]=6000 MDplot(Data)+ylim(0,6000)+ggtitle('Two Features with MTY Capped') boxplot(Data,main='Two Features with MTY Capped') vioplot(Data[,1],Data[,2]) title('Two Features with MTY Capped') ## ----message=FALSE,warning=FALSE---------------------------------------------- library(DataVisualizations) data(ITS) data(MTY) Ind2=which(ITS<900&MTY<8000) if(requireNamespace("ScatterDensity")) V=DensityScatter(ITS[Ind2],MTY[Ind2], xlab = 'ITS in EUR', ylab ='MTY in EUR', main='Scatter density plot using PDE', Plotter="native", DensityEstimation = "PDE") ## ----fig.width=4, fig.height=4------------------------------------------------ data("Lsun3D") n=nrow(Lsun3D$Data) Data=cbind(Lsun3D$Data,runif(n),rnorm(n),rt(n,2),rlnorm(n),rchisq(100,2)) Header=c('x','y','z','uniform','gauss','t','log-normal','chi') cc=cor(Data,method='spearman') diag(cc)=0 Pixelmatrix(cc,YNames = Header,XNames = Header,main = 'Spearman Coeffs') ## ----------------------------------------------------------------------------- library(DataVisualizations) data("Lsun3D") InspectDistances(Lsun3D$Data,method="euclidean") ## ----------------------------------------------------------------------------- library(DataVisualizations) Cls=c(1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 3L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L ) Codes=c("AFG", "AGO", "ALB", "ARG", "ATG", "AUS", "AUT", "BDI", "BEL", "BEN", "BFA", "BGD", "BGR", "BHR", "BHS", "BLZ", "BMU", "BOL", "BRA", "BRB", "BRN", "BTN", "BWA", "CAF", "CAN", "CH2", "CHE", "CHL", "CHN", "CIV", "CMR", "COG", "COL", "COM", "CPV", "CRI", "CUB", "CYP", "DJI", "DMA", "DNK", "DOM", "DZA", "ECU", "EGY", "ESP", "ETH", "FIN", "FJI", "FRA", "FSM", "GAB", "GBR", "GER", "GHA", "GIN", "GMB", "GNB", "GNQ", "GRC", "GRD", "GTM", "GUY", "HKG", "HND", "HTI", "HUN", "IDN", "IND", "IRL", "IRN", "IRQ", "ISL", "ISR", "ITA", "JAM", "JOR", "JPN", "KEN", "KHM", "KIR", "KNA", "KOR", "LAO", "LBN", "LBR", "LCA", "LKA", "LSO", "LUX", "MAC", "MAR", "MDG", "MDV", "MEX", "MHL", "MLI", "MLT", "MNG", "MOZ", "MRT", "MUS", "MWI", "MYS", "NAM", "NER", "NGA", "NIC", "NLD", "NOR", "NPL", "NZL", "OMN", "PAK", "PAN", "PER", "PHL", "PLW", "PNG", "POL", "PRI", "PRT", "PRY", "ROM", "RWA", "SDN", "SEN", "SGP", "SLB", "SLE", "SLV", "SOM", "STP", "SUR", "SWE", "SWZ", "SYC", "SYR", "TCD", "TGO", "THA", "TON", "TTO", "TUN", "TUR", "TWN", "TZA", "UGA", "URY", "USA", "VCT", "VEN", "VNM", "VUT", "WSM", "ZAF", "ZAR", "ZMB", "ZWE") Worldmap(Codes,Cls) ## ----fig.width=5, fig.height=5------------------------------------------------ library(DataVisualizations) data(categoricalVariable) Fanplot(categoricalVariable) Piechart(categoricalVariable) ## ----warning=FALSE, comment=FALSE--------------------------------------------- library(DataVisualizations) data("Lsun3D") Heatmap(Lsun3D$Data,Lsun3D$Cls,method = 'euclidean') Silhouetteplot(Lsun3D$Data,Lsun3D$Cls,PlotIt = T) ## ----fig.width=4, fig.height=4,warning=FALSE---------------------------------- library(DataVisualizations) data("Lsun3D") Accuracy=matrix(NaN,100,2) Algorithms=c("MacQueen","Lloyd") colnames(Accuracy)=Algorithms for(i in 1:100){ Cls=kmeans(Lsun3D$Data,4,algorithm=Algorithms[1])$cluster Cls2=kmeans(Lsun3D$Data,4,algorithm=Algorithms[2])$cluster #this is an artifical example, because the problem of arbitrary class labels is not accounted for #please choose an appropiate internal index or an external index Accuracy[i,1]=sum(Cls==Lsun3D$Cls)/length(Lsun3D$Cls) Accuracy[i,2]=sum(Cls2==Lsun3D$Cls)/length(Lsun3D$Cls) } MDplot(Accuracy) + xlab('Output of Evaluation of two Algorithms') + ylab('Range of Values of the Evaluation of an Algorithm') + ggtitle("Simple Benchmarking")