## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( comment = "#", echo=FALSE, error = FALSE, tidy = FALSE, cache = FALSE, collapse = TRUE, eval=FALSE, # dont rerun vignette when building package out.width = '100%', dpi = 144 ) ## ----include=FALSE------------------------------------------------------------ # # library(pracma) # library(parallel) # library(stats) # library(maps) # library(data.table) # library(CVXR) # library(DiSCos) # library(ggplot2) ## ----------------------------------------------------------------------------- # data("dube") # head(dube) ## ----------------------------------------------------------------------------- # id_col.target <- 2 # t0 <- 2003 ## ----fig.width=8,fig.height=5------------------------------------------------- # df <- copy(dube) # disco <- DiSCo(df, id_col.target, t0, G = 1000, num.cores = 1, permutation = TRUE, CI = TRUE, boots = 1000, graph = TRUE, simplex=TRUE, seed=1, q_max=0.9) ## ----------------------------------------------------------------------------- # # retrieve the weights # weights <- disco$weights # # # retrieve the control unit IDs # controls <- disco$control_ids # # # store in a dataframe # weights_df <- data.frame(weights = weights, fips = controls) # # # merge with state fips codes (built into the maps package) # state.fips <- as.data.table(maps::state.fips) # state.fips <- state.fips[!duplicated(state.fips$abb), c("fips", "abb")] # weights_df <- merge(weights_df, state.fips, by = "fips") # # setorder(weights_df, -weights) # # print(weights_df[1:10,]) # ## ----------------------------------------------------------------------------- # summary(disco$perm) ## ----fig.width=5,fig.height=8, fig.align='center'----------------------------- # discot <- DiSCoTEA(disco, agg="quantileDiff", graph=TRUE) # summary(discot) ## ----fig.width=5,fig.height=8, fig.align='center'----------------------------- # discot <- DiSCoTEA(disco, agg="cdfDiff", graph=TRUE, ylim=c(-0.05, 0.05)) # summary(discot) ## ----------------------------------------------------------------------------- # stats::ecdf(disco$results.periods$`2000`$target$quantiles)(3.5) ## ----------------------------------------------------------------------------- # disco <- DiSCo(dube, id_col.target=id_col.target, t0=t0, G = 1000, num.cores = 1, permutation = TRUE, CI = TRUE, boots = 1000, graph = FALSE, q_min = 0, q_max=0.65, seed=1, simplex=TRUE) ## ----fig.width=5,fig.height=8, fig.align='center'----------------------------- # discot <- DiSCoTEA(disco, agg="quantileDiff", graph=TRUE) # summary(discot) # ## ----fig.width=5,fig.height=8, fig.align='center'----------------------------- # discot <- DiSCoTEA(disco, agg="cdfDiff", graph=TRUE, ylim=c(-0.05,0.05)) # summary(discot)