## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
    collapse = TRUE,
    comment = "#>"
)

## ----setup1, message=FALSE, warning=FALSE, eval=FALSE-------------------------
#  install.packages('DrDimont')

## ----setup2, message=FALSE----------------------------------------------------
library(DrDimont)

## ---- echo=TRUE, warning=FALSE, eval=FALSE------------------------------------
#  install_python_dependencies(package_manager="pip")

## ---- echo=TRUE, warning=FALSE, eval=FALSE------------------------------------
#  install_python_dependencies(package_manager="conda")

## ----Load data----------------------------------------------------------------
data("mrna_data")
data("protein_data")
data("phosphosite_data")
data("metabolite_data")
data("metabolite_protein_interactions")
data("drug_gene_interactions")

## -----------------------------------------------------------------------------
# Data inspection
mrna_data$groupA[1:3, 1:5]
protein_data$groupA[1:3, 1:5]
phosphosite_data$groupA[1:3, 1:5]
metabolite_data$groupA[1:3, 1:5]


## ----Create layers------------------------------------------------------------
# Create individual layers
mrna_layer <- make_layer(name="mrna",
                         data_groupA=mrna_data$groupA[,-1],
                         data_groupB=mrna_data$groupB[,-1],
                         identifiers_groupA=data.frame(gene_name=mrna_data$groupA$gene_name),
                         identifiers_groupB=data.frame(gene_name=mrna_data$groupB$gene_name))

protein_layer <- make_layer(name="protein",
                            data_groupA=protein_data$groupA[, c(-1,-2)],
                            data_groupB=protein_data$groupB[, c(-1,-2)],
                            identifiers_groupA=data.frame(gene_name=protein_data$groupA$gene_name, 
                                ref_seq=protein_data$groupA$ref_seq),
                            identifiers_groupB=data.frame(gene_name=protein_data$groupB$gene_name, 
                                ref_seq=protein_data$groupB$ref_seq))

phosphosite_layer <- make_layer(name="phosphosite",
                                data_groupA=phosphosite_data$groupA[, c(-1,-2, -3)],
                                data_groupB=phosphosite_data$groupB[, c(-1,-2, -3)],
                                identifiers_groupA=data.frame(phosphosite_data$groupA[, 1:3]),
                                identifiers_groupB=data.frame(phosphosite_data$groupB[, 1:3]))

metabolite_layer <- make_layer(name="metabolite",
                               data_groupA=metabolite_data$groupA[, c(-1,-2, -3)],
                               data_groupB=metabolite_data$groupB[, c(-1,-2, -3)],
                               identifiers_groupA=data.frame(metabolite_data$groupA[, 1:3]),
                               identifiers_groupB=data.frame(metabolite_data$groupB[, 1:3]))


## ----Make layers list---------------------------------------------------------
all_layers <- list(mrna_layer, protein_layer, phosphosite_layer, metabolite_layer)

## ----eval=FALSE---------------------------------------------------------------
#  # (i) make inter-layer connection
#  make_connection(from='mrna', to='protein', connect_on='gene_name', weight=1, group="both")

## -----------------------------------------------------------------------------
# Data inspection
metabolite_protein_interactions[1:3, ]

## ----eval=FALSE---------------------------------------------------------------
#  # (ii) make inter-layer connection
#  make_connection(from='protein', to='metabolite',
#                  connect_on=metabolite_protein_interactions,
#                  weight='combined_score', group="both")

## ----Inter-layer connections--------------------------------------------------
all_inter_layer_connections = list(
    make_connection(from='mrna', to='protein', connect_on='gene_name', weight=1, group="both"),
    make_connection(from='protein', to='phosphosite', connect_on='gene_name', weight=1, group="both"),
    make_connection(from='protein', to='metabolite', 
        connect_on=metabolite_protein_interactions, weight='combined_score', group="both")
)

## -----------------------------------------------------------------------------
# Data inspection
drug_gene_interactions[1:3, ]

## ----Make drug-target interaction---------------------------------------------
all_drug_target_interactions <- make_drug_target(
                                    target_molecules='protein',
                                    interaction_table=drug_gene_interactions,
                                    match_on='gene_name')

## -----------------------------------------------------------------------------
return_errors(check_input(layers=all_layers, 
                          inter_layer_connections=all_inter_layer_connections, 
                          drug_target_interactions=all_drug_target_interactions))

## ----Settings-----------------------------------------------------------------
example_settings <- drdimont_settings(
                        handling_missing_data = list(
                            default = "pairwise.complete.obs",
                            mrna = "all.obs"),
                        reduction_method = "pickHardThreshold",
                        r_squared=list(default=0.65, metabolite=0.1),
                        cut_vector=list(default=seq(0.2, 0.65, 0.01)),
                        conda=FALSE,
                        save_data = FALSE,
                        saving_path = tempdir())
# disable multi-threading for example run; 
# not recommended for actual data processing
WGCNA::disableWGCNAThreads()


## ----Run pipeline, eval=FALSE-------------------------------------------------
#  run_pipeline(layers=all_layers,
#               inter_layer_connections=all_inter_layer_connections,
#               drug_target_interactions=all_drug_target_interactions,
#               settings=example_settings)

## ----Correlation matrices, message=FALSE, results='hide'----------------------
reduced_mrna_layer <- make_layer(name="mrna",
                          data_groupA=t(mrna_data$groupA[1:10,2:11]),
                          data_groupB=t(mrna_data$groupB[1:10,2:11]),
                          identifiers_groupA=data.frame(gene_name=mrna_data$groupA$gene_name[1:10]),
                          identifiers_groupB=data.frame(gene_name=mrna_data$groupB$gene_name[1:10]))

example_correlation_matrices <- compute_correlation_matrices(
                                    layers=list(reduced_mrna_layer), 
                                    settings=example_settings)

## -----------------------------------------------------------------------------
# Data inspection
data("correlation_matrices_example")
correlation_matrices_example$annotations$groupA$protein[1:3, ]

## ----Individual graphs, message=FALSE, results='hide'-------------------------
data("correlation_matrices_example")
example_individual_graphs <- generate_individual_graphs(
                                 correlation_matrices=correlation_matrices_example, 
                                 layers=all_layers, 
                                 settings=example_settings)

## ----Combine graphs, message=FALSE, results='hide'----------------------------
example_combined_graphs <- generate_combined_graphs(
                               graphs=example_individual_graphs[["graphs"]], 
                               annotations=example_individual_graphs[["annotations"]], 
                               inter_layer_connections=all_inter_layer_connections, 
                               settings=example_settings)

## -----------------------------------------------------------------------------
# Data inspection
example_combined_graphs$annotations$both[1:3, ]

## ----Drug targets and their edges, message=FALSE, results='hide'--------------
example_drug_target_edges <- determine_drug_targets(
                                 graphs=example_combined_graphs[["graphs"]], 
                                 annotations=example_combined_graphs[["annotations"]], 
                                 drug_target_interactions=all_drug_target_interactions, 
                                 settings=example_settings)

## ----Calculate interaction score, eval=FALSE, message=FALSE, results='hide'----
#  example_interaction_score_graphs <- generate_interaction_score_graphs(
#                                          graphs=example_combined_graphs[["graphs"]],
#                                          drug_target_edgelists=example_drug_target_edges[["edgelists"]],
#                                          settings=example_settings)

## ----Calculate differential score, message=FALSE, results='hide'--------------
data("interaction_score_graphs_example")
example_differential_graph <- generate_differential_score_graph(
                                  interaction_score_graphs=interaction_score_graphs_example, 
                                  settings=example_settings)

# if interaction score graphs have been computed use the following:
#example_differential_score_graph <- generate_differential_score_graph(
#                                        interaction_score_graphs=example_interaction_score_graphs, 
#                                        settings=example_settings)

## ----Drug response, message=FALSE, results='hide'-----------------------------
example_drug_response_scores <- compute_drug_response_scores(
                                    differential_graph=example_differential_graph,
                                    drug_targets=example_drug_target_edges[["targets"]],
                                    settings=example_settings)

## ----Result Output------------------------------------------------------------
head(dplyr::filter(example_drug_response_scores, !is.na(drug_response_score)))