## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", class.output = "output", class.message = "message" ) ## ----setup, include = FALSE--------------------------------------------------- library(EValue) ## ----------------------------------------------------------------------------- biases <- multi_bias(confounding(), selection("general", "increased risk"), misclassification("exposure", rare_outcome = TRUE)) ## ---- result = "asis", echo = FALSE------------------------------------------- tab <- EValue:::get_arg_tab() tab$latex <- sub("^\\$", "$$", tab$latex) tab$latex <- sub("\\$$", "$$", tab$latex) tab$bias <- ifelse( tab$bias == "selection" & !grepl("Y\\*", tab$output), "selection after outcome misclassification", ifelse( tab$bias == "selection" & !grepl("A\\*", tab$output), "selection after exposure misclassification", tab$bias ) ) tab$bias <- ifelse( !tab$rare_outcome & !tab$rare_exposure, tab$bias, ifelse( tab$rare_outcome & tab$rare_exposure, paste0(tab$bias, " (rare exposure and outcome)"), ifelse( tab$rare_outcome, paste0(tab$bias, " (rare outcome)"), ifelse( tab$rare_exposure, paste0(tab$bias, " (rare exposure)"), NA ) ) ) ) tab <- tab[c("bias", "latex", "output", "argument")] tab <- tab[!duplicated(tab),] tab$output <- paste0("`", tab$output, "`") tab$argument <- paste0("`", tab$argument, "`") names(tab) <- c("Bias", "Parameter", "R Output", "Function argument") knitr::kable(tab) ## ----------------------------------------------------------------------------- summary(biases) ## ----------------------------------------------------------------------------- summary( multi_bias(confounding(), misclassification("exposure", rare_outcome = TRUE), selection("general", "increased risk")) ) ## ----------------------------------------------------------------------------- print(biases) ## ---- eval = FALSE------------------------------------------------------------ # multi_bound(biases, # RRUcY = 2, RRAUc = 1.5, # RRSUsA1 = 1.25, RRUsYA1 = 2.5, # ORYAaS = 1.75) ## ----------------------------------------------------------------------------- param_vals <- seq(1, 3, by = 0.5) # create every combination of values params <- expand.grid( RRUcY = param_vals, RRAUc = param_vals, RRSUsA1 = param_vals, RRUsYA1 = param_vals, ORYAaS = param_vals ) params$bound <- mapply(multi_bound, RRUcY = params$RRUcY, RRAUc = params$RRAUc, RRSUsA1 = params$RRSUsA1, RRUsYA1 = params$RRUsYA1, ORYAaS = params$ORYAaS, MoreArgs = list(biases = biases) ) ## ----------------------------------------------------------------------------- hist(params$bound, main = NULL, xlab = "Bound") ## ----------------------------------------------------------------------------- multi_evalue(biases, est = RR(4)) ## ----------------------------------------------------------------------------- # square-root approximation of the odds ratio multi_evalue(biases, est = OR(4, rare = FALSE)) ## ----------------------------------------------------------------------------- # use verbose = FALSE to suppress message about parameters multi_evalue(biases, est = RR(4), lo = 2.5, hi = 6, verbose = FALSE) ## ----------------------------------------------------------------------------- multi_evalue(biases, est = RR(0.25), lo = 0.17, hi = 0.4, verbose = FALSE) ## ----------------------------------------------------------------------------- summary(multi_evalue(biases, est = RR(4)))