## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(EZtune) ## ---- eval = FALSE------------------------------------------------------------ # eztune(x, y, method = "svm", optimizer = "hjn", fast = TRUE, cross = NULL, loss = "default") # ## ---- eval = FALSE------------------------------------------------------------ # eztune_cv(x, y, model, cross = 10) # ## ---- eval = FALSE------------------------------------------------------------ # data(lichen) # data(lichenTest) # data(mullein) # data(mulleinTest) # ## ----------------------------------------------------------------------------- library(mlbench) data(Ionosphere) y <- Ionosphere[, 35] x <- Ionosphere[, -c(2, 35)] dim(x) ## ----------------------------------------------------------------------------- ion_default <- eztune(x, y) ion_default$n ion_default$loss eztune_cv(x, y, ion_default) ## ----------------------------------------------------------------------------- ion_svm <- eztune(x, y, fast = FALSE, cross = 3, loss = "auc") ion_svm$nfold ion_svm$loss eztune_cv(x, y, ion_svm) ## ----------------------------------------------------------------------------- ion_gbm <- eztune(x, y, method = "gbm", optimizer = "ga", fast = 50) ion_gbm$n ion_gbm$loss eztune_cv(x, y, ion_gbm) ## ----------------------------------------------------------------------------- data(BostonHousing2) x <- BostonHousing2[, c(1:4, 7:19)] y <- BostonHousing2[, 6] dim(x) ## ----------------------------------------------------------------------------- bh_default <- eztune(x, y) bh_default$n bh_default$loss eztune_cv(x, y, bh_default) ## ----------------------------------------------------------------------------- bh_ga <- eztune(x, y, optimizer = "ga") bh_ga$n bh_ga$loss eztune_cv(x, y, bh_ga) ## ----------------------------------------------------------------------------- bh_gbm <- eztune(x, y, method = "gbm", fast = 0.75, loss = "mae") bh_gbm$n bh_gbm$loss eztune_cv(x, y, bh_gbm) ## ----------------------------------------------------------------------------- library(mlbench) library(rsample) data(Sonar) sonar_split <- initial_split(Sonar, strata = Class) sonar_train <- training(sonar_split) sonar_test <- testing(sonar_split) sonar_folds <- vfold_cv(sonar_train) ## ----------------------------------------------------------------------------- model <- eztune(x = subset(sonar_train, select = -Class), y = sonar_train$Class, method = "svm", optimizer = "hjn", fast = 0.5) model$loss ## ----------------------------------------------------------------------------- library(yardstick) predictions <- predict(model, sonar_test) acc <- accuracy_vec(truth = sonar_test$Class, estimate = predictions[, 1]) auc <- roc_auc_vec(truth = sonar_test$Class, estimate = predictions[, 2]) acc auc ## ----------------------------------------------------------------------------- library(dplyr) library(mlbench) library(rsample) data(BostonHousing2) bh <- mutate(BostonHousing2, lcrim = log(crim)) %>% dplyr::select(-town, -medv, -crim) bh_split <- initial_split(bh) bh_train <- training(bh_split) bh_test <- testing(bh_split) bh_folds <- vfold_cv(bh_train) ## ----------------------------------------------------------------------------- model <- eztune(x = subset(bh_train, select = -cmedv), y = bh_train$cmedv, method = "svm", optimizer = "hjn", fast = 0.5) sqrt(model$loss) ## ----------------------------------------------------------------------------- predictions <- predict(model, bh_test) rmse <- rmse_vec(truth = bh_test$cmedv, estimate = predictions) mae <- mae_vec(truth = bh_test$cmedv, estimate = predictions) rmse mae