## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----include=FALSE------------------------------------------------------------ library("EpiLPS") library("EpiEstim") ## ----out.width='100%', fig.align='center', fig.cap='', echo=FALSE------------- knitr::include_graphics('EpiLPS-Chart.png') ## ----out.width='100%', fig.align='center', fig.cap='', echo=FALSE------------- knitr::include_graphics('EpiLPS-Arch.png') ## ----devepilps, eval=FALSE---------------------------------------------------- # install.packages("devtools") # devtools::install_github("oswaldogressani/EpiLPS") ## ----si_interval, fig.align='center', fig.width=6.3--------------------------- si_spec <- Idist(mean = 2.7, sd = 1.3, dist = "gamma") si <- si_spec$pvec si plot(si_spec, titlesize = 12) ## ----episim, fig.align='center', fig.width=7, fig.height=2.8------------------ set.seed(123) datasim <- episim(si = si, Rpattern = 5, endepi = 40, dist = "negbin", overdisp = 15, plotsim = TRUE) incidence <- datasim$y incidence ## ----LPSfit1------------------------------------------------------------------ LPSfit <- estimR(incidence = incidence, si = si) class(LPSfit) knitr::kable(tail(LPSfit$RLPS[,1:8])) ## ----summaryLPSfit------------------------------------------------------------ summary(LPSfit) ## ----plotLPSfit, fig.align='center', fig.width=7, fig.height=4---------------- plot(LPSfit) ## ----estimMCMC, eval=FALSE---------------------------------------------------- # LPSfitmcmc <- estimRmcmc(incidence = incidence, si = si, niter = 5000, burnin = 2000) ## ----estimMCMC2, echo = FALSE, results='hide'--------------------------------- LPSfitmcmc <- estimRmcmc(incidence = incidence, si = si, niter = 5000, burnin = 2000) ## ----estimMCMC3--------------------------------------------------------------- summary(LPSfitmcmc) ## ----addCori, fig.width=7, fig.height=4--------------------------------------- LPSfit2 <- estimR(incidence = incidence, si = si, CoriR = TRUE) knitr::kable(tail(LPSfit2$RCori[,1:8])) plot(LPSfit2, addfit = "Cori") ## ----traditionalplot, fig.width=7, fig.height=3.8----------------------------- tt <- seq(8, 40, by = 1) Rtrue <- sapply(tt, datasim$Rtrue) plot(tt, Rtrue, type = "l", xlab = "Time", ylab = "R", ylim = c(0,4), lwd = 2) lines(tt, LPSfit2$RLPS$R[-(1:7)], col = "red", lwd = 2) lines(tt, LPSfit2$RCori$`Mean(R)`, col = "blue", lwd = 2) legend("topright", col = c("black","red","blue"), c("True R","EpiLPS","EpiEstim"), bty = "n", lty = c(1,1,1)) ## ----customizeplot, fig.width=7, fig.height=5.3------------------------------- gridExtra::grid.arrange( plot(LPSfit, col = "firebrick", legendpos = "top", cicol = "orange"), plot(LPSfit, col = "forestgreen", legendpos = "none", cicol = "green", theme = "light", title = "Reproduction number"), plot(LPSfit, col = "darkblue", legendpos = "none", cicol = "orchid", theme = "classic"), plot(LPSfit, col = "white", legendpos = "none", cicol = "gray", theme = "dark"), nrow = 2, ncol = 2) ## ----zikaload, fig.width=7, fig.height=3.8------------------------------------ # Loading the data data("zika2015") zika <- zika2015 plotIncidence <- epicurve(zika$incidence, dates = zika$dates, datelab = "14d", title = "Zika incidence", xtickangle = 70) plotIncidence ## ----zikafit------------------------------------------------------------------ # Specification of the serial interval si <- Idist(mean = 7, sd = 1.5) siplot <- plot(si, titlesize = 11) epifit <- estimR(zika$incidence, dates = zika$dates, si = si$pvec) summary(epifit) ## ----zikaplot, fig.width=7, fig.height=5.3------------------------------------ # Plot the smoothed epidemic curve plotsmooth <- epicurve(zika$incidence, dates = zika$dates, datelab = "14d", smooth = epifit, smoothcol = "orange", title = "Zika incidence (smoothed)", xtickangle = 70) # Plot of the estimated reproduction number Rplot <- plot(epifit, datelab = "7d", xtickangle = 70, legendpos = "none", col = "forestgreen") # Show all plots together gridExtra::grid.arrange(plotIncidence, plotsmooth, siplot, Rplot, nrow = 2, ncol = 2) ## ----measles, fig.width=7.5, fig.height=5.7, warning=FALSE-------------------- data(Measles1861) measlesDAT <- Measles1861 measles_incid <- measlesDAT$incidence measles_si <- measlesDAT$si_distr epifit_measles <- estimR(measles_incid, si = measles_si, CoriR = T) epicurve_measles<- epicurve(measles_incid, datelab = "1d", title = "Measles, Hagelloch, Germany, 1861", col = "lightblue3", smooth = epifit_measles, smoothcol = "dodgerblue4") Rplot_measles <- plot(epifit_measles, timecut = 6, legendpos = "none") Rplot_measles2 <- plot(epifit_measles, addfit = "Cori", timecut = 6, legendpos = "top") gridExtra::grid.arrange(epicurve_measles, Rplot_measles, Rplot_measles2, nrow = 2, ncol = 2) ## ----flu1918, fig.width=7.5, fig.height=5.7, warning=FALSE-------------------- data(Flu1918) fluDAT <- Flu1918 flu_incid <- fluDAT$incidence flu_si <- fluDAT$si_distr[-1] epifit_flu <- estimR(flu_incid, si = flu_si, CoriR = T) epicurve_flu <- epicurve(flu_incid, datelab = "7d", title = "Influenza, Baltimore, 1918", col = "orange", smooth = epifit_flu, smoothcol = "firebrick") Rplot_flu <- plot(epifit_flu, legendpos = "none") Rplot_flu2 <- plot(epifit_flu, addfit = "Cori", legendpos = "top") siplot_flu <- plot(Idist(probs = flu_si), barcol = "indianred1") gridExtra::grid.arrange(epicurve_flu, Rplot_flu, Rplot_flu2, siplot_flu, nrow = 2, ncol = 2) ## ----sars2003, fig.width=7.5, fig.height=5.7, warning=FALSE------------------- data("SARS2003") sarsDAT <- SARS2003 sars_incid <- sarsDAT$incidence sars_si <- sarsDAT$si_distr[-1] epifit_sars <- estimR(sars_incid, si = sars_si, CoriR = T) epicurve_sars <- epicurve(sars_incid, datelab = "7d", title = "SARS, Hong Kong, 2003", col = "ivory4", smooth = epifit_sars, smoothcol = "darkviolet") Rplot_sars <- plot(epifit_sars, legendpos = "none") Rplot_sars2 <- plot(epifit_sars, addfit = "Cori", legendpos = "top") gridExtra::grid.arrange(epicurve_sars, Rplot_sars, Rplot_sars2, nrow = 2, ncol = 2) ## ----perf1, eval=FALSE-------------------------------------------------------- # perfcheck <- perfRestim(si = "mers", scenario = 5, days = 60, seed = 1905, overdisp = 50) # perfcheck$LPS ## ----perf1-bis, echo = FALSE, results='hide', eval = TRUE--------------------- perfcheck <- perfRestim(si = "mers", scenario = 5, days = 60, seed = 1905, overdisp = 50) ## ----perf2, fig.width=7.8, fig.height=6.2, eval = TRUE------------------------ perfcheck$LPS gridExtra::grid.arrange(perfcheck$inciplot, perfcheck$Rlpsplot,perfcheck$Repiestimplot, nrow = 2, ncol = 2)