## ----eval=TRUE,echo=FALSE----------------------------------------------------- set.seed(1) ## ----eval=TRUE, warning=FALSE, message=FALSE---------------------------------- library(EvidenceSynthesis) simulationSettings <- createSimulationSettings( nSites = 5, n = 10000, treatedFraction = 0.75, nStrata = 5, hazardRatio = 2, randomEffectSd = 0.5 ) populations <- simulatePopulations(simulationSettings) ## ----eval=TRUE---------------------------------------------------------------- library(Cyclops) # Assume we are at site 1: population <- populations[[1]] cyclopsData <- createCyclopsData(Surv(time, y) ~ x + strata(stratumId), data = population, modelType = "cox" ) cyclopsFit <- fitCyclopsModel(cyclopsData) ## ----eval=TRUE---------------------------------------------------------------- # Hazard ratio: exp(coef(cyclopsFit)) # 95% confidence interval: exp(confint(cyclopsFit, parm = "x")[2:3]) ## ----eval=TRUE---------------------------------------------------------------- approximation <- approximateLikelihood( cyclopsFit = cyclopsFit, parameter = "x", approximation = "adaptive grid" ) head(approximation) ## ----eval=TRUE---------------------------------------------------------------- plotLikelihoodFit( approximation = approximation, cyclopsFit = cyclopsFit, parameter = "x" ) ## ----eval=TRUE---------------------------------------------------------------- fitModelInDatabase <- function(population) { cyclopsData <- createCyclopsData(Surv(time, y) ~ x + strata(stratumId), data = population, modelType = "cox" ) cyclopsFit <- fitCyclopsModel(cyclopsData) approximation <- approximateLikelihood(cyclopsFit, parameter = "x", approximation = "adaptive grid" ) return(approximation) } approximations <- lapply(populations, fitModelInDatabase) ## ----eval=TRUE, message=FALSE------------------------------------------------- estimate <- computeFixedEffectMetaAnalysis(approximations) estimate ## ----eval=TRUE, message=FALSE------------------------------------------------- estimate <- computeBayesianMetaAnalysis(approximations) exp(estimate[1:3]) ## ----eval=TRUE, message=FALSE------------------------------------------------- plotPosterior(estimate) ## ----eval=TRUE, message=FALSE------------------------------------------------- plotMcmcTrace(estimate) ## ----eval=TRUE, message=FALSE------------------------------------------------- estimate2 <- computeBayesianMetaAnalysis(approximations, priorSd = c(2, 0.1)) exp(estimate2[1:3]) ## ----eval=TRUE, message=FALSE------------------------------------------------- # Make up some data site labels: labels <- paste("Data site", LETTERS[1:length(populations)]) plotMetaAnalysisForest( data = approximations, labels = labels, estimate = estimate, xLabel = "Hazard Ratio", showLikelihood = TRUE )