## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( echo = TRUE, fig.align = "center", fig.width = 6, warnings = FALSE ) library(ExPanDaR) library(knitr) library(kableExtra) ## ----variables---------------------------------------------------------------- kable(data.frame(Variable=russell_3000_data_def$var_name, Definition=sub('$', '\\$', russell_3000_data_def$var_def, fixed = TRUE)), row.names = FALSE) ## ----cross-sectional_ids------------------------------------------------------ cs_ids <- unique(russell_3000[,c("coid", "coname")]) identical(cs_ids$coid, unique(russell_3000$coid)) identical(cs_ids$coname, unique(russell_3000$coname)) ## ----duplicates--------------------------------------------------------------- any(duplicated(russell_3000[,c("coid", "period")])) ## ----missing_obs-------------------------------------------------------------- prepare_missing_values_graph(russell_3000, ts_id = "period") ## ----descriptive_statistics_table--------------------------------------------- r3 <- droplevels(russell_3000[russell_3000$period > "FY2013", c("coid", "coname", "period", "sector", "toas", "nioa", "cfoa", "accoa", "return")]) t <- prepare_descriptive_table(r3) t$kable_ret %>% kable_styling("condensed", full_width = F, position = "center") ## ----extreme_observations----------------------------------------------------- t <- prepare_ext_obs_table(na.omit(r3[c("coname", "period", "nioa")])) t$kable_ret %>% kable_styling("condensed", full_width = F, position = "center") ## ----winsorizing-------------------------------------------------------------- r3win <- treat_outliers(r3, percentile = 0.01) t <- prepare_ext_obs_table(na.omit(r3win[c("coname", "period", "nioa")])) t$kable_ret %>% kable_styling("condensed", full_width = F, position = "center") ## ----descriptive_statistics_table_winsorized---------------------------------- t <- prepare_descriptive_table(r3win) t$kable_ret %>% kable_styling("condensed", full_width = F, position = "center") ## ----correlation_table-------------------------------------------------------- t<- prepare_correlation_table(r3win, bold = 0.01, format="html") t$kable_ret %>% kable_styling("condensed", full_width = F, position = "center") ## ----correlation_graph, fig.width = 4, fig.height= 4-------------------------- ret <- prepare_correlation_graph(r3win) ## ----time_trend_plot---------------------------------------------------------- graph <- prepare_trend_graph(r3win[c("period", "nioa", "cfoa", "accoa")], "period") graph$plot ## ----quantile_plot------------------------------------------------------------ graph <- prepare_quantile_trend_graph(r3win[c("period", "return")], "period", c(0.05, 0.25, 0.5, 0.75, 0.95)) graph$plot ## ----bgtg_plot---------------------------------------------------------------- graph <- prepare_by_group_trend_graph(r3win, "period", "sector", "nioa") graph$plot ## ----scatter_plot, fig.width = 7, fig.height= 6------------------------------- prepare_scatter_plot(r3win, x="nioa", y="return", color="sector", size="toas", loess = 1) ## ----regressions-------------------------------------------------------------- dvs <- c("return", "return", "return", "return", "return", "return") idvs <- list(c("nioa"), c("cfoa"), c("accoa"), c("cfoa", "accoa"), c("nioa", "accoa"), c("nioa", "accoa")) feffects <- list("period", "period", "period", c("coid", "period"), c("coid", "period"), c("coid", "period")) clusters <- list("", "", "", "coid", "coid", c("coid", "period")) t <- prepare_regression_table(r3win, dvs, idvs, feffects, clusters) htmltools::HTML(t$table) ## ----sub-sample_regressions--------------------------------------------------- t <- prepare_regression_table(r3win, "return", c("nioa", "accoa"), byvar="period") htmltools::HTML(t$table)