--- title: "Beta distribution" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Distributions-Beta} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- <!-- %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{Distributions-Beta} \usepackage{amsmath,amssymb} --> <!--Beta distribution--> ======================================================== Probability density function: ------------------------- $$f(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}} {\mathcal{B}(\alpha,\beta)}$$ with $\alpha$ and $\beta$ two shape parameters and $\mathcal B$ beta function. <!-- ``` Mathematica Code: (x^(alpha-1) (1-x)^(beta-1))/(beta(alpha, beta)) ``` --> Cumulative distribution function: ------------------------- $$F(x) = \frac{\int_{0}^{x} y^{\alpha-1}(1-y)^{\beta-1}dy} {\mathcal{B}(\alpha,\beta)} =\mathcal{B}(x; \alpha,\beta)$$ with $\mathcal B (x; \alpha,\beta)$ incomplete beta function. <!-- ``` Mathematica Code: Integrate[(x^(alpha-1) (1-x)^(beta-1))/(beta(alpha, beta)),{x,0,y}] ``` --> Log-likelihood function: ------------------------- $$L(\alpha,\beta;X)=\sum_i\left[ (\alpha-1)\ln(x)+(\beta-1)\ln(1-x)-\ln \mathcal{B}(\alpha,\beta) \right]$$ <!-- ``` Mathematica Code: (alpha-1)log(x)+(beta-1)log(1-x)-log(beta(alpha,beta)) ``` --> Score function vector: ------------------------- $$V(\mu,\sigma;X) =\left( \begin{array}{c} \frac{\partial L}{\partial \alpha} \\ \frac{\partial L}{\partial \beta} \end{array} \right) =\sum_i \left( \begin{array}{c} \psi^{(0)}(\alpha+\beta)-\psi^{(0)}(\alpha)+\ln(x) \\ \psi^{(0)}(\alpha+\beta)-\psi^{(0)}(\beta)+\ln(x) \end{array} \right) $$ with $\psi^{(0)}$ being log-gamma function. <!-- ``` Mathematica Code: D[(alpha-1)log(x)+(beta-1)log(1-x)-log(beta(alpha,beta)),alpha] D[(alpha-1)log(x)+(beta-1)log(1-x)-log(beta(alpha,beta)),beta] ``` --> Observed information matrix: ------------------------- $$\mathcal J (\mu,\sigma;X)= \left( \begin{array}{cc} \psi^{(1)}(\alpha)-\psi^{(1)}(\alpha+\beta) & -\psi^{(1)}(\alpha+\beta) \\ -\psi^{(1)}(\alpha+\beta) & \psi^{(1)}(\beta)-\psi^{(1)}(\alpha+\beta) \end{array} \right) $$ with $\psi^{(1)}$ being digamma function. <!-- ``` Mathematica Code: -D[D[(alpha-1)log(x)+(beta-1)log(1-x)-log(beta(alpha,beta)),alpha],alpha] -D[D[(alpha-1)log(x)+(beta-1)log(1-x)-log(beta(alpha,beta)),alpha],beta] -D[D[(alpha-1)log(x)+(beta-1)log(1-x)-log(beta(alpha,beta)),beta],beta] ``` -->