--- title: "Normal distribution" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Distributions-Normal} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- <!-- %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{Distributions-Normal} \usepackage{amsmath,amssymb} --> <!--Normal Distribution--> ======================================================== Probability density function: ------------------------- $$f(x) = \frac 1 {\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2} {2\sigma^2}}$$ with $\mu$ the mean of the distribution and $\sigma$ the standard deviation <!-- ``` Mathematica Code: 1/(sigma*sqrt(2*pi))*e^(-(x-mu)^2/(2*sigma^2)) ``` --> Cumulative distribution function: ------------------------- $$F(x) =\int_{-\infty}^{x}\frac 1 {\sigma\sqrt{2\pi}} e^{-\frac{(y-\mu)^2} {2\sigma^2}}dy =\int_{-\infty}^{\frac {x-\mu}{\sigma}}\frac 1 {\sqrt{2\pi}} e^{-\frac{z^2} {2}}dz =\frac 1 2 \left[1+\text{erf}\left(\frac {x-\mu} {\sigma\sqrt{2}} \right)\right]$$ with $\text{erf}$ being the error function. <!-- ``` Mathematica Code: Integrate[1/sqrt(2*pi)*e^(-z^2/2),{z,-Infinity,(x-mu)/sigma}] ``` --> Log-likelihood function: ------------------------- $$L(\mu,\sigma;X)=\sum_i\left[-\frac 1 2 \ln(2\pi)-\ln(\sigma)-\frac{1}{2\sigma^2}(X_i-\mu)^2\right]$$ <!-- ``` Mathematica Code: log[1/(sigma sqrt(2 pi)) e^(-(x-mu)^2/(2 sigma^2))]-(x - mu)^2/(2 sigma^2) - Log[2 Pi]/2 - Log[sigma] ``` --> Score function vector: ------------------------- $$V(\mu,\sigma;X) =\left( \begin{array}{c} \frac{\partial L}{\partial \mu} \\ \frac{\partial L}{\partial \sigma} \end{array} \right) =\sum_i\left( \begin{array}{c} \frac {X_i-\mu}{\sigma^2} \\ \frac {(X_i-\mu)^2-\sigma^2}{\sigma^3} \end{array} \right) $$ <!-- ``` Mathematica Code: D[-(x - mu)^2/(2 sigma^2) - Log[2 Pi]/2 - Log[sigma],mu] D[-(x - mu)^2/(2 sigma^2) - Log[2 Pi]/2 - Log[sigma],sigma] ``` --> Observed information matrix: ------------------------- $$\mathcal J (\mu,\sigma;X)= -\left( \begin{array}{cc} \frac{\partial^2 L}{\partial \mu^2} & \frac{\partial^2 L}{\partial \mu \partial \sigma} \\ \frac{\partial^2 L}{\partial \sigma \partial \mu} & \frac{\partial^2 L}{\partial \sigma^2} \end{array} \right) =\sum_i \left( \begin{array}{cc} \frac{1}{\sigma^2} & \frac{2(X_i-\mu)}{\sigma^3} \\ \frac{2(X_i-\mu)}{\sigma^3} & \frac{3(X_i-\mu)^2-\sigma^2}{\sigma^4} \end{array} \right) $$ <!-- ``` Mathematica Code: -D[D[-(x-mu)^2/(2 sigma^2)-Log[2 Pi]/2-Log[sigma],mu],mu] -D[D[-(x-mu)^2/(2 sigma^2)-Log[2 Pi]/2-Log[sigma],mu],sigma] -D[D[-(x-mu)^2/(2 sigma^2)-Log[2 Pi]/2-Log[sigma],sigma],sigma] ``` -->