The ExtendedLaplace
package provides tools for working
with the Extended Laplace (EL) distribution, a generalization of the
classical Laplace distribution. This distribution is characterized by
four parameters: location μ,
scale σ>0, and a uniform
noise range δ>0.
The EL distribution arises as the sum Y=X+U where X∼Laplace(μ,σ) and U∼Uniform(−δ,δ).
To install the development version of this package from GitHub:
The package provides the following main functions:
dEL(y, mu, sigma, delta)
: Probability density
functionpEL(y, mu, sigma, delta)
: Cumulative distribution
functionqEL(u, mu, sigma, delta)
: Quantile function (inverse
CDF)rEL(n, mu, sigma, delta)
: Random number generationqqplotEL(samples, mu, sigma, delta)
: Quantile-Quantile
Plotlibrary(ExtendedLaplace)
curve(dEL(x, mu = 0, sigma = 1, delta = 1), from = -5, to = 5, ylab = "Density", xlab = 'y')
The Extended Laplace distribution has the following form:
g(y)=14δ{ey−μ+δσ−ey−μ−δσ,y<μ−δ2−e−y−μ+δσ−ey−μ−δσ,μ−δ≤y<μ+δe−y−μ−δσ−e−y−μ+δσ,y≥μ+δ
G(y)=14δ{σey−μ+δσ−σey−μ−δσ,y<μ−δ2(y−μ+δ)+σe−y−μ+δσ−σey−μ−δσ,μ−δ≤y<μ+δ4δ+σe−y−μ+δσ−σe−y−μ−δσ,y≥μ+δ.
For σ>0 and 0<u<1, we have Q(u)=μ+σz, where
z={log[4τu]−log[eτ−e−τ]for 0<u≤(1−e−2τ)/(4τ)z∗for (1−e−2τ)/(4τ)≤u≤1−(1−e−2τ)/(4τ)−log[4τ(1−u)]+log[eτ−e−τ]for 1−(1−e−2τ)/(4τ)≤u<1,
where τ=δ/σ and z∗ is a unique solution of the equation: u=14τ[2(z+τ)−e−τ(ez−e−z)],−τ≤z≤τ.
sessionInfo()
# R version 4.4.3 (2025-02-28)
# Platform: x86_64-apple-darwin20
# Running under: macOS Sequoia 15.5
#
# Matrix products: default
# BLAS: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRblas.0.dylib
# LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
#
# locale:
# [1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#
# time zone: America/Los_Angeles
# tzcode source: internal
#
# attached base packages:
# [1] stats graphics grDevices utils datasets methods base
#
# other attached packages:
# [1] ExtendedLaplace_0.1.6
#
# loaded via a namespace (and not attached):
# [1] digest_0.6.37 R6_2.6.1 fastmap_1.2.0 xfun_0.51
# [5] splines_4.4.3 cachem_1.1.0 knitr_1.50 htmltools_0.5.8.1
# [9] rmarkdown_2.29 stats4_4.4.3 lifecycle_1.0.4 cli_3.6.4
# [13] sass_0.4.9 jquerylib_0.1.4 VGAM_1.1-13 compiler_4.4.3
# [17] rstudioapi_0.17.1 tools_4.4.3 evaluate_1.0.3 bslib_0.9.0
# [21] yaml_2.3.10 rlang_1.1.5 jsonlite_1.9.1
Saah, D. K., & Kozubowski, T. J. (2025).
A new class of extended Laplace distributions with applications to
modeling contaminated Laplace data.
Journal of Computational and Applied Mathematics.
https://doi.org/10.1016/j.cam.2025.116588