## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(FuzzySTs) ## ----Chunk_B-01--------------------------------------------------------------- # Simple example mat <- matrix(c(1,2,2,3,3,4,4,5), ncol =4) Fuzzy.sample.mean(mat) is.alphacuts(mat) ## ----Chunk_B-02--------------------------------------------------------------- # Simple example mat <- matrix(c(1,2,2,3,3,4,4,5), ncol =4) w <- c(1,3) Weighted.fuzzy.mean(mat, w) ## ----Chunk_B-03--------------------------------------------------------------- # Simple example mat <- matrix(c(1,2,2,3,3,4,4,5), ncol =4) Moment(mat, k=4, dist.type = "GSGD") ## ----Chunk_B-04--------------------------------------------------------------- # Simple example mat <- matrix(c(1,2,0.25,1.8,2,2.6,0.5,3,3,2.6,3.8,4,4,4.2,3.9,5), ncol =4) Skewness(mat, dist.type = "GSGD") ## ----Chunk_B-05--------------------------------------------------------------- # Simple example mat <- matrix(c(1,2,0.25,1.8,2,2.6,0.5,3,3,2.6,3.8,4,4,4.2,3.9,5), ncol =4) Kurtosis(mat, dist.type = "GSGD") ## ----Chunk_B-06--------------------------------------------------------------- # Example 1 data <- matrix(c(1,2,3,2,2,1,1,3,1,2),ncol=1) MF111 <- TrapezoidalFuzzyNumber(0,1,1,2) MF112 <- TrapezoidalFuzzyNumber(1,2,2,3) MF113 <- TrapezoidalFuzzyNumber(2,3,3,3) PA11 <- c(1,2,3) # Fuzzification using FUZZ giving a matrix of the quadruples p,q,r,s data.fuzzified <- FUZZ(data,mi=1,si=1,PA=PA11) Fuzzy.variance(data.fuzzified, method = "approximation5", plot=TRUE) ## ----Chunk_B-07--------------------------------------------------------------- head(Fuzzy.variance(data.fuzzified, method = "exact", plot=TRUE)) ## ----Chunk_B-08--------------------------------------------------------------- Fuzzy.variance(data.fuzzified, method = "distance") ## ----Chunk_B-09--------------------------------------------------------------- # Example 2 - Fuzzification using GFUZZ giving a numerical matrix of left and right alpha-cuts data.fuzzified2 <- GFUZZ(data,mi=1,si=1,PA=PA11) head(Fuzzy.variance(data.fuzzified2, method = "exact", plot=TRUE)) ## ----Chunk_B-10--------------------------------------------------------------- Fuzzy.variance(data.fuzzified2, method = "distance")