## ----------------------------------------------------------------------------- nVar = 3 dMax = 2 poLabs(nVar = nVar, dMax = dMax) ## ---- echo=FALSE-------------------------------------------------------------- nVar = 3 dMax = 2 ## ----------------------------------------------------------------------------- pMax = d2pMax(nVar, dMax) ## ----------------------------------------------------------------------------- param <- c(1, 0, 0, 0, 0, 4, 2, -3, 0, 0) ## ----------------------------------------------------------------------------- nVar = 3 dMax = 2 cbind(param, poLabs(nVar, dMax)) ## ----------------------------------------------------------------------------- poLabs(3, 2, Xnote = 'y') ## ----------------------------------------------------------------------------- poLabs(3, 2, Xnote = c('x','W','y')) ## ----------------------------------------------------------------------------- # parameters a = 0.52 b = 2 c = 4 # equations Eq1 <- c(0,-1, 0,-1, 0, 0, 0, 0, 0, 0) Eq2 <- c(0, 0, 0, a, 0, 0, 1, 0, 0, 0) Eq3 <- c(b,-c, 0, 0, 0, 0, 0, 1, 0, 0) ## ----------------------------------------------------------------------------- K = cbind(Eq1, Eq2, Eq3) ## ----------------------------------------------------------------------------- visuEq(K) ## ----------------------------------------------------------------------------- visuEq(K, substit = 1) ## ---- eval=TRUE--------------------------------------------------------------- visuEq(K, substit = c("U", "V", "W")) ## ----------------------------------------------------------------------------- # The initial conditions of the system variables v0 <- c(-0.6, 0.6, 0.4) # the model formulation K (see former section) # the number of integration steps `Istep` nIstep <- 5000 # the time step length `onestep` onestep = 1/50 # the model dimension `nVar` nVar = 3 # the maximum polynomial degree `dMax` dMax = 2 ## ----------------------------------------------------------------------------- outNumi <- numicano(nVar, dMax, Istep = nIstep, onestep = onestep, KL = K, v0 = v0) ## ---- eval=FALSE-------------------------------------------------------------- # outNumi$KL ## ---- eval = FALSE------------------------------------------------------------ # # nVar # dim(outNumi$K)[2] # # dMax # pMax <- dim(outNumi$K)[1] # p2dMax(nVar, pMaxKnown = pMax) ## ---- eval=FALSE-------------------------------------------------------------- # # initial conditions # head(outNumi$reconstr, 1)[2:(nVar+1)] # # time step # diff(outNumi$reconstr[1:2,1]) # # number of integration time step # dim(outNumi$reconstr)[1] ## ---- fig.show='hold', fig.align='center'------------------------------------- plot(outNumi$reconstr[,1], outNumi$reconstr[,2], type='l', main='time series', xlab='t', ylab = 'x(t)') ## ---- fig.show='hold', fig.align='center', fig.width=4, fig.height=4---------- plot(outNumi$reconstr[,2], outNumi$reconstr[,3], type='l', main='phase portrait', xlab='x(t)', ylab = 'y(t)')