## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", # fig.path = "man/figures/README-", out.width = "100%" ) ## ----param FG----------------------------------------------------------------- namesFG <- c('A','B') v_NQ <- c(60,50) #size of each FG list_pi = list(c(0.16 ,0.40 ,0.44),c(0.3,0.7)) #proportion of each block in each FG list_pi[[1]] ## ----param 1 net-------------------------------------------------------------- E <- rbind(c(1,2),c(2,2),c(1,1)) typeInter <- c( "inc","diradj", "adj") v_distrib <- c('ZIgaussian','bernoulli','poisson') ## ----param net---------------------------------------------------------------- list_theta <- list() list_theta[[1]] <- list() list_theta[[1]]$mean <- matrix(c(6.1, 8.9, 6.6, 9.8, 2.6, 1.0), 3, 2) list_theta[[1]]$var <- matrix(c(1.6, 1.6, 1.8, 1.7 ,2.3, 1.5),3, 2) list_theta[[1]]$p0 <- matrix(c(0.4, 0.1, 0.6, 0.5 , 0.2, 0),3, 2) list_theta[[2]] <- matrix(c(0.7,1.0, 0.4, 0.6),2, 2) m3 <- matrix(c(2.5, 2.6 ,2.2 ,2.2, 2.7 ,3.0 ,3.6, 3.5, 3.3),3,3 ) list_theta[[3]] <- (m3 + t(m3))/2# for symetrisation ## ----simul 2, eval = TRUE, echo = TRUE---------------------------------------- library(GREMLINS) dataSim <- rMBM(v_NQ,E , typeInter, v_distrib, list_pi, list_theta, namesFG = namesFG, seed = 4,keepClassif = TRUE) list_Net <- dataSim$list_Net length(list_Net) names(list_Net[[1]]) list_Net[[1]]$typeInter list_Net[[1]]$rowFG list_Net[[1]]$colFG ## ----MBM simul, echo = TRUE, eval = TRUE-------------------------------------- res_MBMsimu <- multipartiteBM(list_Net, v_distrib = v_distrib, namesFG = c('A','B'), v_Kinit = c(2,2), nbCores = 2, initBM = FALSE, keep = FALSE) ## ----estim param, eval=TRUE--------------------------------------------------- res_MBMsimu$fittedModel[[1]]$paramEstim$list_theta$AB$mean ## ----extract cluster, eval=TRUE----------------------------------------------- Cl <- extractClustersMBM(res_MBMsimu) ## ----MBM fixed, echo = TRUE, eval = TRUE-------------------------------------- res_MBMsimu_fixed <- multipartiteBMFixedModel(list_Net, v_distrib = v_distrib, nbCores = 2,namesFG = namesFG, v_K = c(3,2)) res_MBMsimu_fixed$fittedModel[[1]]$paramEstim$v_K extractClustersMBM(res_MBMsimu_fixed)$A ## ----sim NA------------------------------------------------------------------- ############# NA data at random in any matrix epsilon = 10/100 list_Net_NA <- list_Net for (m in 1:nrow(E)){ U <- sample(c(1,0),v_NQ[E[m,1]]*v_NQ[E[m,2]],replace=TRUE,prob = c(epsilon, 1-epsilon)) matNA <- matrix(U,v_NQ[E[m,1]],v_NQ[E[m,2]]) list_Net_NA[[m]]$mat[matNA== 1] = NA if (list_Net_NA[[m]]$typeInter == 'adj') { M <- list_Net_NA[[m]]$mat diag(M) <- NA M[lower.tri(M)] = t(M)[lower.tri(M)] list_Net_NA[[m]]$mat <- M } } ## ----MBM simul NA, echo = TRUE, eval = TRUE----------------------------------- res_MBMsimuNA <- multipartiteBM(list_Net_NA, v_distrib = v_distrib, namesFG = c('A','B'), v_Kinit = c(2,2), nbCores = 2, keep = FALSE) ## ----MBM predict NA, echo = TRUE, eval = TRUE--------------------------------- pred <- predictMBM(res_MBMsimuNA)