## ----------------------------------------------------------------------------- # install.packages("GUniFrac") ## ---- message=FALSE----------------------------------------------------------- library(GUniFrac) ## ---- results = FALSE--------------------------------------------------------- data(throat.otu.tab) data(throat.meta) comm <- t(throat.otu.tab) meta.dat <- throat.meta meta.dat ## ---- results = FALSE--------------------------------------------------------- ZicoSeq.obj <- ZicoSeq(meta.dat = meta.dat, feature.dat = comm, grp.name = 'SmokingStatus', adj.name = 'Sex', feature.dat.type = "count", # Filter to remove rare taxa prev.filter = 0.2, mean.abund.filter = 0, max.abund.filter = 0.002, min.prop = 0, # Winsorization to replace outliers is.winsor = TRUE, outlier.pct = 0.03, winsor.end = 'top', # Posterior sampling is.post.sample = TRUE, post.sample.no = 25, # Use the square-root transformation link.func = list(function (x) x^0.5), stats.combine.func = max, # Permutation-based multiple testing correction perm.no = 99, strata = NULL, # Reference-based multiple stage normalization ref.pct = 0.5, stage.no = 6, excl.pct = 0.2, # Family-wise error rate control is.fwer = TRUE, verbose = TRUE, return.feature.dat = TRUE) ## ---- fig.retina = 4, fig.width= 8, fig.height=8, results=FALSE, message=FALSE, warning=FALSE---- ZicoSeq.plot(ZicoSeq.obj, pvalue.type = 'p.adj.fdr', cutoff = 0.1, text.size = 10, out.dir = NULL, width = 10, height = 6) ## ---- results = FALSE--------------------------------------------------------- comm.p <- t(t(comm) / colSums(comm)) ZicoSeq.obj.p <- ZicoSeq(meta.dat = meta.dat, feature.dat = comm.p, grp.name = 'SmokingStatus', adj.name = 'Sex', feature.dat.type = "proportion", # Filter to remove rare taxa prev.filter = 0.2, mean.abund.filter = 0, max.abund.filter = 0.002, min.prop = 0, # Winsorization to replace outliers is.winsor = TRUE, outlier.pct = 0.03, winsor.end = 'top', # Posterior sampling will be automatically disabled is.post.sample = FALSE, post.sample.no = 25, # Use the square-root transformation link.func = list(function (x) x^0.5, function (x) x^0.25), stats.combine.func = max, # Permutation-based multiple testing correction perm.no = 99, strata = NULL, # Reference-based multiple stage normalization ref.pct = 0.5, stage.no = 6, excl.pct = 0.2, # Family-wise error rate control is.fwer = TRUE, verbose = TRUE, return.feature.dat = T) suppressWarnings(ZicoSeq.plot(ZicoSeq.obj = ZicoSeq.obj.p, pvalue.type = 'p.adj.fdr', cutoff = 0.1, text.size = 10, out.dir = NULL, width = 10, height = 6)) ## ---- fig.retina = 4, fig.width= 14, fig.height=8, results=FALSE, message=FALSE, warning=FALSE---- comm.o <- comm[rowMeans(comm != 0) >= 0.2, ] + 1 comm.o <- log(t(t(comm.o) / colSums(comm.o))) ZicoSeq.obj.o <- ZicoSeq(meta.dat = meta.dat, feature.dat = comm.o, grp.name = 'SmokingStatus', adj.name = 'Sex', feature.dat.type = "other", # Filter will not be applied prev.filter = 0, mean.abund.filter = 0, max.abund.filter = 0, min.prop = 0, # Winsorization the top end is.winsor = TRUE, outlier.pct = 0.03, winsor.end = 'top', # Posterior sampling will be automatically disabled is.post.sample = FALSE, post.sample.no = 25, # Identity function is used link.func = list(function (x) x), stats.combine.func = max, # Permutation-based multiple testing correction perm.no = 99, strata = NULL, # Reference-based multiple-stage normalization will not be performed ref.pct = 0.5, stage.no = 6, excl.pct = 0.2, # Family-wise error rate control is.fwer = TRUE, verbose = TRUE, return.feature.dat = T) ZicoSeq.plot(ZicoSeq.obj = ZicoSeq.obj.o, pvalue.type = 'p.adj.fdr', cutoff = 0.1, text.size = 10, out.dir = NULL, width = 10, height = 6) ## ----------------------------------------------------------------------------- sessionInfo()