---
title: "GenEst - 4. Graphic User Interface"
author: "Juniper L. Simonis"
date: "`r Sys.Date()`"
output: rmarkdown::html_vignette
vignette: >
  %\VignetteIndexEntry{GenEst - 4. Graphic User Interface}
  %\VignetteEngine{knitr::rmarkdown}
  %\usepackage[utf8]{inputenc}
---
```{r include = F}
require(rmarkdown)
require(knitr)
```

# Overview

This document describes the codebase used to create the GenEst Graphic User 
Interface (GUI). The Genest GUI is coded in HTML via external R packages 
([DT](https://cran.r-project.org/package=DT),
[htmltools](https://cran.r-project.org/package=htmltools),
[shiny](https://cran.r-project.org/package=shiny),
[shinyjs](https://cran.r-project.org/package=shinyjs),
as well as a number of internal functions to facilitate a simple,
human-readable codebase underlying the app. The goal being to allow GenEst 
to evolve as fluidly as possible at the user interface.

# Execution 

The GUI is executed locally or as a deployed app following the basic approach
of shiny applications. For ease of implementation, we have created an overall
function to intialize the app, `runGenEst()`, which calls both the server and
UI codebases. Like most vintage Shiny apps, we employee the two-file system,
including a `ui.R` and `server.R` script, although each script is Spartan. The
`ui.R` script includes a single call to the `GenEstUI(appType)` function,
which starts the cascade of HTML-generating functions outlined in 
**UI Function Hierarchy**. The `server.R` script includes a single reference
(not a call) to the function `GenEstServer`, which is detailed in
**Server Function Hierarchy**. 

# User Interface

### UI Function Hierarchy

The GenEst User Interface is constructed in HTML using pages, panels, 
tabs, and widgets. The code is parsed into a series of hierarchical functions 
to facilitate readability and mobility of specific UI components.

* `GenEstUI(appType)`
  * `dataInputPanel()`
    * `dataInputSidebar()`
      * `dataInputWidget("SE")`
      * `dataInputWidget("CP")`
      * `dataInputWidget("SS")`
      * `dataInputWidget("DWP")`
      * `dataInputWidget("CO")`
    * `loadedDataPanel()`
      * `dataTabPanel("SE")`
      * `dataTabPanel("CP")`
      * `dataTabPanel("SS")`
      * `dataTabPanel("DWP")`
      * `dataTabPanel("CO")`
	* `analysisPanel()`
    * `GeneralInputsPanel()`
      * `GeneralInputsSidebar()`
        * `modelInputWidget("nsim")`
        * `modelInputWidget("CL")`
        * `modelInputWidget("sizeclassCol")`		
    * `SEPanel()`
      * `SESidebar()`
        * `modelInputWidget("obsSE")`
        * `modelInputWidget("predsSE")`
        * `modelInputWidget("kFixed")`
        * `modelRunWidget("SE")`
        * `modelOutputWidget("SE")`	   
      * `SEMainPanel()`	
        * `selectedDataPanel("SE")`
        * `modelOutputPanel("SEFigures")`
        * `modelOutputPanel("SEEstimates")`
        * `modelOutputPanel("SEModComparison")`
        * `modelOutputPanel("SEModSelection")`	  
    * `CPPanel()`
      * `CPSidebar()`
        * `modelInputWidget("ltp")`
        * `modelInputWidget("fta")`
        * `modelInputWidget("predsCP")`
        * `modelInputWidget("dists")`
        * `modelRunWidget("CP")`
        * `modelOutputWidget("CP")`
      * `CPMainPanel()`
        * `selectedDataPanel("CP")`
        * `modelOutputPanel("CPFigures")`
        * `modelOutputPanel("CPEstimates")`
        * `modelOutputPanel("CPModComparison")`
        * `modelOutputPanel("CPModSelection")`	
	* `MPanel()`
      * `MSidebar()`
        * `modelInputWidget("frac")`
        * `modelInputWidget("DWPCol")`
        * `modelInputWidget("dateFoundCol")`
        * `modelRunWidget("M")`
        * `modelOutputWidget("M")`
      * `MMainPanel()`	  
    * `gPanel()`
      * `gSidebar()`
        * `modelInputWidget("gSearchInterval")`
        * `modelInputWidget("gSearchMax")`
        * `modelInputWidget("useSSinputs")`
        * `modelInputWidget("useSSdata")`
        * `modelRunWidget("g")`
        * `modelOutputWidget("g")`
      * `gMainPanel()`	
        * `selectedDataPanel("g")`
        * `modelOutputPanel("gFigures")`
        * `modelOutputPanel("gSummary")`	  
  * `helpPanel(type)`
    * `gettingStartedPanel()`
      * `gettingStartedContent()`
    * `downloadsPanel()`
      * `dataDownloadsWidget("RP")`
      * `dataDownloadsWidget("RPbat")`
      * `dataDownloadsWidget("cleared")`
      * `dataDownloadsWidget("powerTower")`
      * `dataDownloadsWidget("PV")`
      * `dataDownloadsWidget("trough")`
      * `dataDownloadsWidget("mock")`
    * `aboutPanel()`
      * `aboutContent()`
        * `GenEstAuthors()`
        * `GenEstGUIauthors()`
        * `GenEstLicense()`
        * `GenEstAcknowledgements()`
        * `GenEstLogos()`
    * `disclaimersPanel(appType)`
      * `disclaimerContent(appType)`
        * `disclaimerUSGS()`
        * `disclaimerWEST(appType)`		
		
### UI Widgets
 
We have coded up a number of widget functions, some of which are simple
wrappers on shiny functions that help reduce code clutter, and others of which
are custom HTML (e.g., for model selection), but which are still nonetheless
wrapped over shiny widgets: 

* `dataInputWidget(dataType)`
* `modelInputWidget(inType)`		
* `modelRunWidget(modType)`
* `modelOutputWidget(modType)`	   
* `dataDownloadsWidget(set)`
* `modelSelectionWidget(modType)`	  
* `kFixedWidget()`

A major need for widgets is having a simple condition wrapped on it, such that
the widget is within a conditional panel, defined by some other input or 
output variable. To facilitate coding of these widgets, we have made a function
`widgetMaker`, which is a generalized constructor function.

### UI Panels

Similarly to the input widgets, we have coded up a number of output panel 
functions that help direct traffic in the building on the HTML document. These
functions are generalized to the suite of possible options for panels currently 
needed by leveraging the basic template approach with limited variation.

* `dataTabPanel(dataType)`
* `selectedDataPanel(modType)`
* `modelOutputPanel(outType)`

### UI Content

There is a fair amount of (mostly) static content, which we have contained
wihtin functions to reduce overall code clutter. These functions primarily 
dictate content within the "Help" tab's subtabs.

* `gettingStartedContent()`
* `aboutContent()`
* `GenEstAuthors()`
* `GenEstGUIAuthors()`
* `GenEstLicense()`
* `GenEstAcknowledgements()`
* `GenEstLogos()`
* `disclaimersContent(appType)`
* `disclaimerUSGS()`
* `disclaimerWEST(appType)`

# Server Functionality

###  Reactivity

The server-side functionality operates using [Shiny's reactive 
programming](https://shiny.rstudio.com/articles/reactivity-overview.html) 
framework. In particular, we include a main `reactiveValues` list called
`rv`, that, in addition to the standard `input` and `output` lists is
passed among functions throughout the app. The `rv` list holds all of the
reactive values currently being used by the application. 

### Server Function Hierarchy

The GenEst server code is a relatively flat hierarchy, especially in 
comparison to the UI code. In particular, after a brief set of preamble
functions for preparing objects and options, `GenEstServer` makes many calls
to `observeEvent`, the reactive observation function, one call for each
of the possible events in the application (data load, model run or clear, 
column selection, clear of contents). Each call also includes an
evaluation of the held-back "handler" code for the event returned by
the function `reaction`, with the handler being the code that
is to be evaluated when the event is observed. The expression is held-back
in `reaction` to minimize scoping issues associated with message-related
functions.

* `GenEstServer(input, output, session)`
  * `rv <- initialReactiveValues()`
  * `output <- initialOutput(rv, output)`
  * `msgs <- msgList()`  
  * `options(htmlwidgets.TOJSON_ARGS = list(na = 'string'))` 
  * `observeEvent(DT.options = list(pageLength = 25))`  
  * `observeEvent(input$clear_all,  eval(reaction("clear_all")))`
  * `observeEvent(input$file_SE, eval(reaction("file_SE")))`
  * `observeEvent(input$file_SE_clear, eval(reaction("file_SE_clear")))`
  * `observeEvent(input$file_CP, eval(reaction("file_CP")))`
  * `observeEvent(input$file_CP_clear, eval(reaction("file_CP_clear")))`
  * `observeEvent(input$file_SS, eval(reaction("file_SS")))`
  * `observeEvent(input$file_SS_clear, eval(reaction("file_SS_clear")))`
  * `observeEvent(input$file_DWP, eval(reaction("file_DWP")))`
  * `observeEvent(input$file_DWP_clear, eval(reaction("file_DWP_clear")))`
  * `observeEvent(input$file_CO, eval(reaction("file_CO")))`
  * `observeEvent(input$file_CO_clear, eval(reaction("file_CO_clear")))`

  * `observeEvent(input$class, eval(reaction("class")), ignoreNULL = FALSE)`

  * `observeEvent(input$obsSE, eval(reaction("obsSE")), ignoreNULL = FALSE)`
  * `observeEvent(input$predsSE, eval(reaction("predsSE")), ignoreNULL = FALSE)`
  * `observeEvent(input$run_SE, eval(reaction("run_SE")))`
  * `observeEvent(input$run_SE_clear, eval(reaction("run_SE_clear")))`
  * `observeEvent(input$outSEclass, eval(reaction("outSEclass")))`
  * `observeEvent(input$outSEp, eval(reaction("outSEp")))`
  * `observeEvent(input$outSEk, eval(reaction("outSEk")))`

  * `observeEvent(input$ltp, eval(reaction("ltp")), ignoreNULL = FALSE)`
  * `observeEvent(input$fta, eval(reaction("fta")), ignoreNULL = FALSE)`
  * `observeEvent(input$predsCP, eval(reaction("predsCP")), ignoreNULL = FALSE)`
  * `observeEvent(input$run_CP, eval(reaction("run_CP")))`
  * `observeEvent(input$run_CP_clear, eval(reaction("run_CP_clear")))`
  * `observeEvent(input$outCPclass, eval(reaction("outCPclass")))`
  * `observeEvent(input$outCPdist, eval(reaction("outCPdist")))`
  * `observeEvent(input$outCPl, eval(reaction("outCPl")))`
  * `observeEvent(input$outCPs, eval(reaction("outCPs")))`

  * `observeEvent(input$run_M, eval(reaction("run_M")))`
  * `observeEvent(input$run_M_clear, eval(reaction("run_M_clear")))`
  * `observeEvent(input$split_M, eval(reaction("split_M")))`
  * `observeEvent(input$split_M_clear, eval(reaction("split_M_clear")))`
  * `observeEvent(input$transpose_split, eval(reaction("transpose_split")))`

  * `observeEvent(input$useSSdata, eval(reaction("useSSdata")))`
  * `observeEvent(input$useSSinputs, eval(reaction("useSSinputs")))`
  * `observeEvent(input$run_g, eval(reaction("run_g")))`
  * `observeEvent(input$run_g_clear, eval(reaction("run_g_clear")))`
  * `observeEvent(input$outgclass, eval(reaction("outgclass")))`

The `reaction` function is, essentially, a parsed-text-generating
function. Depending upon the specific event (`eventName`, the only input), the
necessary set of function calls (messages for running, running the code,
messages for when done) is prepared for evaluation. The main function used to
do things within the handler code (when the event occurs) is `eventReaction`, 
which calls three functions: `update_rv`, `update_output`, and `update_input`,
in that order (updating the output depends on the rv being updated already
and updating the input requires both the rv and output to be up-to-date):

* `eventReaction(eventName, rv, input, output, session)`
  * `update_rv(eventName, rv, input)`
  * `update_output(eventName, rv, output)`
  * `update_input(eventName, rv, input, session)`
  
Because of the scoping set-up for Shiny apps, there is no need to assign
the returned elements for `update_rv` and `update_output` to anything, and
`update_input` works through `session` to direct its updates to the 
application. 
  
Each of the three functions takes `eventName` as the first argument,
which is used to toggle amongst the possible actions to be taken with 
respect to each of the lists. That is, each of the three `update_` functions
contains a large internal set of routines, and only the relevant ones are
called for a given function. This occurs via simple conditional code blocks
("if the eventType is this, do this") for each of the possible events,
thereby reducing the number of specific functions, but increasing the size
of the key functions. Within each of the three functions, some of the events
trigger a substantial amount of code while others only trigger a few (or no)
lines. Similarly, some of the handler expressions take virutally no time to 
run, while others take a few minutes.