## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

## ----setup, message=FALSE-----------------------------------------------------
library(dplyr)
library(sf)
library(tidyr)
library(readr)
library(stringr)
library(purrr)
library(readxl)
library(httk)
library(httr2)

geo_tox_data <- list()

## ----eval=FALSE---------------------------------------------------------------
# filename <- "2019_Toxics_Exposure_Concentrations.xlsx"
# tmp <- tempfile(filename)
# download.file(
#   paste0("https://www.epa.gov/system/files/documents/2022-12/", filename),
#   tmp
# )
# exposure <- read_xlsx(tmp)
# 
# # Normalization function
# min_max_norm = function(x) {
#   min_x <- min(x, na.rm = TRUE)
#   max_x <- max(x, na.rm = TRUE)
#   if (min_x == max_x) {
#     rep(0, length(x))
#   } else {
#     (x - min_x) / (max_x - min_x)
#   }
# }
# 
# geo_tox_data$exposure <- exposure |>
#   # North Carolina counties
#   filter(State == "NC", !grepl("0$", FIPS)) |>
#   # Aggregate chemicals by county
#   summarize(across(-c(State:Tract), c(mean, sd)), .by = FIPS) |>
#   pivot_longer(-FIPS, names_to = "chemical") |>
#   mutate(stat = if_else(grepl("_1$", chemical), "mean", "sd"),
#          chemical = gsub('.{2}$', '', chemical)) |>
#   pivot_wider(names_from = stat) |>
#   # Normalize concentrations
#   mutate(norm = min_max_norm(mean), .by = chemical)

## ----eval=FALSE---------------------------------------------------------------
# # Copy/paste the chemical names into the batch search field
# # https://comptox.epa.gov/dashboard/batch-search
# cat(geo_tox_data$exposure |> distinct(chemical) |> pull(), sep = "\n")
# # Export results with "CAS-RN" identifiers as a csv file, then process in R
# 
# exposure_casrn <- read_csv("CCD-Batch-Search.csv",
#                            show_col_types = FALSE) |>
#   filter(DTXSID != "N/A") |>
#   # Prioritize results based on FOUND_BY status
#   arrange(INPUT,
#           grepl("Approved Name", FOUND_BY),
#           grepl("^Synonym", FOUND_BY)) |>
#   # Keep one result per INPUT
#   group_by(INPUT) |>
#   slice(1) |>
#   ungroup()
# 
# # Update exposure data with CompTox Dashboard data
# geo_tox_data$exposure <- geo_tox_data$exposure |>
#   inner_join(exposure_casrn, by = join_by(chemical == INPUT)) |>
#   select(FIPS, casn = CASRN, chnm = PREFERRED_NAME, mean, sd, norm)

## ----eval=FALSE---------------------------------------------------------------
# get_cHTS_hits <- function(assays = NULL, chemids = NULL) {
# 
#   if (is.null(assays) & is.null(chemids)) {
#     stop("Must provide at least one of 'assays' or 'chemids'")
#   }
# 
#   # Format query parameters
#   req_params <- list()
# 
#   if (!is.null(assays)) {
#     if (!is.list(assays)) assays <- as.list(assays)
#     req_params$assays <- assays
#   }
# 
#   if (!is.null(chemids)) {
#     if (!is.list(chemids)) chemids <- as.list(chemids)
#     req_params$chemids <- chemids
#   }
# 
#   # Query ICE API
#   resp <- request("https://ice.ntp.niehs.nih.gov/api/v1/search") |>
#     req_body_json(req_params) |>
#     req_perform()
# 
#   if (resp$status_code != 200) {
#     stop("Failed to retrieve data from ICE API")
#   }
# 
#   # Return active chemicals
#   result <- resp |> resp_body_json() |> pluck("endPoints")
# 
#   fields <- c("assay", "casrn", "dtxsid", "substanceName",
#               "endpoint", "value")
# 
#   map(fields, \(x) map_chr(result, x)) |>
#     set_names(fields) |>
#     bind_cols() |>
#     filter(endpoint == "Call", value == "Active") |>
#     select(-c(endpoint, value)) |>
#     distinct()
# }
# 
# assays <- c("APR_HepG2_p53Act_1h_dn",
#             "APR_HepG2_p53Act_1h_up",
#             "APR_HepG2_p53Act_24h_dn",
#             "APR_HepG2_p53Act_24h_up",
#             "APR_HepG2_p53Act_72h_dn",
#             "APR_HepG2_p53Act_72h_up",
#             "ATG_p53_CIS_up",
#             "TOX21_DT40",
#             "TOX21_DT40_100",
#             "TOX21_DT40_657",
#             "TOX21_ELG1_LUC_Agonist",
#             "TOX21_H2AX_HTRF_CHO_Agonist_ratio",
#             "TOX21_p53_BLA_p1_ratio",
#             "TOX21_p53_BLA_p2_ratio",
#             "TOX21_p53_BLA_p3_ratio",
#             "TOX21_p53_BLA_p4_ratio",
#             "TOX21_p53_BLA_p5_ratio")
# 
# chemids <- unique(geo_tox_data$exposure$casn)
# 
# cHTS_hits_API <- get_cHTS_hits(assays = assays, chemids = chemids)

## ----eval=FALSE---------------------------------------------------------------
# get_ICE_dose_resp <- function(assays = NULL, chemids = NULL) {
# 
#   if (is.null(assays) & is.null(chemids)) {
#     stop("Must provide at least one of 'assays' or 'chemids'")
#   }
# 
#   # Format query parameters
#   req_params <- list()
# 
#   if (!is.null(assays)) {
#     if (!is.list(assays)) assays <- as.list(assays)
#     req_params$assays <- assays
#   }
# 
#   if (!is.null(chemids)) {
#     if (!is.list(chemids)) chemids <- as.list(chemids)
#     req_params$chemids <- chemids
#   }
# 
#   # Query ICE API
#   resp <- request("https://ice.ntp.niehs.nih.gov/api/v1/curves") |>
#     req_body_json(req_params) |>
#     req_perform()
# 
#   if (resp$status_code != 200) {
#     stop("Failed to retrieve data from ICE API")
#   }
# 
#   # Return dose-response data
#   result <- resp |> resp_body_json() |> pluck("curves")
# 
#   map(result, function(x) {
#     tibble(
#       endp = x[["assay"]],
#       casn = x[["casrn"]],
#       call = x[["dsstoxsid"]],
#       chnm = x[["substance"]],
#       call = x[["call"]],
#       logc = map_dbl(x[["concentrationResponses"]], "concentration") |> log10(),
#       resp = map_dbl(x[["concentrationResponses"]], "response")
#     )
#   }) |>
#     bind_rows()
# }
# 
# assays <- unique(cHTS_hits_API$assay)
# 
# chemids <- intersect(cHTS_hits_API$casrn, geo_tox_data$exposure$casn)
# 
# dose_response <- get_ICE_dose_resp(assays = assays, chemids = chemids)
# 
# # Only keep active calls for assay/chemical combinations
# geo_tox_data$dose_response <- dose_response |>
#   filter(call == "Active") |>
#   select(-call)
# 
# # Update dose-response data with CompTox Dashboard data
# geo_tox_data$dose_response <- geo_tox_data$dose_response |>
#   inner_join(exposure_casrn, by = join_by(casn == CASRN)) |>
#   select(endp, casn, chnm = PREFERRED_NAME, logc, resp)

## ----eval=FALSE---------------------------------------------------------------
# # Data for North Carolina
# url <- paste0("https://www2.census.gov/programs-surveys/popest/datasets/",
#               "2010-2019/counties/asrh/cc-est2019-alldata-37.csv")
# age <- read_csv(url, show_col_types = FALSE)
# 
# geo_tox_data$age <- age |>
#   # 7/1/2019 population estimate
#   filter(YEAR == 12) |>
#   # Create FIPS
#   mutate(FIPS = str_c(STATE, COUNTY)) |>
#   # Keep selected columns
#   select(FIPS, AGEGRP, TOT_POP)

## ----eval=FALSE---------------------------------------------------------------
# places <- read_csv("PLACES__County_Data__GIS_Friendly_Format___2020_release.csv",
#                    show_col_types = FALSE)
# 
# # Convert confidence interval to standard deviation
# extract_SD <- function(x) {
#   range <- as.numeric(str_split_1(str_sub(x, 2, -2), ","))
#   diff(range) / 3.92
# }
# 
# geo_tox_data$obesity <- places |>
#   # North Carolina Counties
#   filter(StateAbbr == "NC") |>
#   # Select obesity data
#   select(FIPS = CountyFIPS, OBESITY_CrudePrev, OBESITY_Crude95CI) |>
#   # Change confidence interval to standard deviation
#   rowwise() |>
#   mutate(OBESITY_SD = extract_SD(OBESITY_Crude95CI)) |>
#   ungroup() |>
#   select(-OBESITY_Crude95CI)

## ----eval=FALSE---------------------------------------------------------------
# set.seed(2345)
# n_samples <- 500
# 
# # Get CASN for which httk simulation is possible. Try using load_dawson2021,
# # load_sipes2017, or load_pradeep2020 to increase availability.
# load_sipes2017()
# casn <- intersect(unique(geo_tox_data$dose_response$casn),
#                   get_cheminfo(suppress.messages = TRUE))
# 
# # Define population demographics for httk simulation
# pop_demo <- cross_join(
#   tibble(age_group = list(c(0, 2), c(3, 5), c(6, 10), c(11, 15),
#                           c(16, 20), c(21, 30), c(31, 40), c(41, 50),
#                           c(51, 60), c(61, 70), c(71, 100))),
#   tibble(weight = c("Normal", "Obese"))) |>
#   # Create column of lower age_group values
#   rowwise() |>
#   mutate(age_min = age_group[1]) |>
#   ungroup()
# 
# # Create wrapper function around httk steps
# simulate_css <- function(chem.cas, agelim_years, weight_category,
#                          samples, verbose = TRUE) {
# 
#   if (verbose) {
#     cat(chem.cas,
#         paste0("(", paste(agelim_years, collapse = ", "), ")"),
#         weight_category,
#         "\n")
#   }
# 
#   httkpop <- list(method = "vi",
#                   gendernum = NULL,
#                   agelim_years = agelim_years,
#                   agelim_months = NULL,
#                   weight_category = weight_category,
#                   reths = c(
#                     "Mexican American",
#                     "Other Hispanic",
#                     "Non-Hispanic White",
#                     "Non-Hispanic Black",
#                     "Other"
#                   ))
# 
#   css <- try(
#     suppressWarnings({
#       mcs <- create_mc_samples(chem.cas = chem.cas,
#                                samples = samples,
#                                httkpop.generate.arg.list = httkpop,
#                                suppress.messages = TRUE)
# 
#       calc_analytic_css(chem.cas = chem.cas,
#                         parameters = mcs,
#                         model = "3compartmentss",
#                         suppress.messages = TRUE)
#     }),
#     silent = TRUE
#   )
# 
#   # Return
#   if (is(css, "try-error")) {
#     warning(paste0("simulate_css failed to generate data for CASN ", chem.cas))
#     list(NA)
#   } else {
#     list(css)
#   }
# }
# 
# # Simulate `C_ss` values
# simulated_css <- map(casn, function(chem.cas) {
#   pop_demo |>
#     rowwise() |>
#     mutate(
#       css = simulate_css(.env$chem.cas, age_group, weight, .env$n_samples)
#     ) |>
#     ungroup()
# })
# simulated_css <- setNames(simulated_css, casn)
# 
# # Remove CASN that failed simulate_css
# casn_keep <- map_lgl(simulated_css, function(df) {
#   !(length(df$css[[1]]) == 1 && is.na(df$css[[1]]))
# })
# simulated_css <- simulated_css[casn_keep]
# 
# # Get median `C_ss` values for each age_group
# simulated_css <- map(
#   simulated_css,
#   function(cas_df) {
#     cas_df |>
#       nest(.by = age_group) |>
#       mutate(
#         age_median_css = map_dbl(data, function(df) median(unlist(df$css),
#                                                            na.rm = TRUE))
#       ) |>
#       unnest(data)
#   }
# )
# 
# # Get median `C_ss` values for each weight
# simulated_css <- map(
#   simulated_css,
#   function(cas_df) {
#     cas_df |>
#       nest(.by = weight) |>
#       mutate(
#         weight_median_css = map_dbl(data, function(df) median(unlist(df$css),
#                                                               na.rm = TRUE))
#       ) |>
#       unnest(data) |>
#       arrange(age_min, weight)
#   }
# )
# 
# geo_tox_data$simulated_css <- simulated_css

## ----eval=FALSE---------------------------------------------------------------
# casn_keep <- names(geo_tox_data$simulated_css)
# 
# geo_tox_data$exposure <- geo_tox_data$exposure |>
#   filter(casn %in% casn_keep)
# 
# geo_tox_data$dose_response <- geo_tox_data$dose_response |>
#   filter(casn %in% casn_keep)

## ----eval=FALSE---------------------------------------------------------------
# county <- st_read("cb_2019_us_county_5m/cb_2019_us_county_5m.shp")
# state <- st_read("cb_2019_us_state_5m/cb_2019_us_state_5m.shp")
# 
# geo_tox_data$boundaries <- list(
#   county = county |>
#     filter(STATEFP == 37) |>
#     select(FIPS = GEOID, geometry),
#   state = state |>
#     filter(STATEFP == 37) |>
#     select(geometry)
# )