## ----include=FALSE------------------------------------------------------------ knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width=6, fig.height=4 ) # Legge denne i YAML på toppen for å skrive ut til tex #output: # pdf_document: # keep_tex: true # Original: # rmarkdown::html_vignette: # toc: true ## ----setup-------------------------------------------------------------------- # Start the HDANOVA R package library(HDANOVA) ## ----------------------------------------------------------------------------- # Find directory extdata from the multiblock package mbdir <- system.file('extdata/', package = "multiblock") # Comma separated values, row names in first column meta_data <- read.csv(paste0(mbdir, "/meta_data.csv"), row.names = 1) # If working directory matches file location: # meta_data <- read.csv('meta_data.csv', row.names = 1) meta_data # Semi-colon separated values (locales where the decimal point is comma), # no row names proteins <- read.csv2(paste0(mbdir, "/proteins.csv")) proteins # Blank space separated data without labels genes <- read.table(paste0(mbdir, "/genes.dat")) genes ## ----------------------------------------------------------------------------- # Column-centring genes_centred <- scale(genes, scale=FALSE) colMeans(genes_centred) # Check mean values # Autoscaling genes_scaled <- scale(genes) apply(genes_scaled, 2, sd) # Check standard deviations # SNV (transpose, autoscale, re-transpose) genes_snv <- t(scale(t(genes))) apply(genes_snv, 1, sd) # Check standard deviations ## ----------------------------------------------------------------------------- # Default is sum-coding dummycode(meta_data$colour) # Treatment coding dummycode(meta_data$colour, "contr.treatment") # Full dummy-coding (rank deficient) dummycode(meta_data$colour, drop = FALSE) # Replace categorical with dummy-coded, use I() to index by common name meta_data2 <- meta_data meta_data2$colour <- I(dummycode(meta_data$colour, drop = FALSE)) meta_data2 meta_data2$colour ## ----------------------------------------------------------------------------- # Direct approach blocks1 <- list(meta = meta_data2, proteins = proteins, genes = genes) # Two-step approach blocks2 <- list(meta_data2, proteins, genes) names(blocks2) <- c('meta', 'proteins', 'genes') # Same result identical(blocks1, blocks2) # Access by name or number blocks1[['meta']] blocks2[[1]] ## ----------------------------------------------------------------------------- # Construct block data.frame from list df1 <- block.data.frame(blocks1) # Construct block data.frame from data.frame: # First merge blocks into data.frame my_data <- cbind(meta_data2, proteins, genes) # Then construct block data.frame using named # list of indexes df2 <- block.data.frame(my_data, block_inds = list(meta = 1:2, proteins = 3:5, genes = 6:8)) # Same result identical(df1,df2) # Access by name or number df1[[2]] df2[['proteins']] df1[c(1,3)] df1[-2] df2[c('proteins','genes')] # Use with formula interface (see other vignettes) # sopls(meta ~ proteins + genes, data = df1) # Use with single list interface (see other vignettes) # mfa(df1[c(1,3)], ncomp = 3)