--- title: "A. Data handling" output: rmarkdown::html_vignette: toc: true vignette: > %\VignetteIndexEntry{A. Data handling} %\VignetteEncoding{UTF-8} %\VignetteEngine{knitr::rmarkdown} editor_options: chunk_output_type: console --- ```{r, include=FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width=6, fig.height=4 ) # Legge denne i YAML på toppen for å skrive ut til tex #output: # pdf_document: # keep_tex: true # Original: # rmarkdown::html_vignette: # toc: true ``` ```{r setup} # Start the HDANOVA R package library(HDANOVA) ``` # Read from file Data are stored in many different file formats. The following three examples cover two types of CSV-files and generic flat files. ```{r} # Find directory extdata from the multiblock package mbdir <- system.file('extdata/', package = "multiblock") # Comma separated values, row names in first column meta_data <- read.csv(paste0(mbdir, "/meta_data.csv"), row.names = 1) # If working directory matches file location: # meta_data <- read.csv('meta_data.csv', row.names = 1) meta_data # Semi-colon separated values (locales where the decimal point is comma), # no row names proteins <- read.csv2(paste0(mbdir, "/proteins.csv")) proteins # Blank space separated data without labels genes <- read.table(paste0(mbdir, "/genes.dat")) genes ``` # Data pre-processing Before analysis, various types of pre-processing may be needed. Centring and standardising/scaling may be considered the most basic. In R, these operations are performed column-wise by default, leading to autoscaling. If these operations are performed on the rows, we perform the standard normal variate (SNV) instead. ```{r} # Column-centring genes_centred <- scale(genes, scale=FALSE) colMeans(genes_centred) # Check mean values # Autoscaling genes_scaled <- scale(genes) apply(genes_scaled, 2, sd) # Check standard deviations # SNV (transpose, autoscale, re-transpose) genes_snv <- t(scale(t(genes))) apply(genes_snv, 1, sd) # Check standard deviations ``` ## Re-coding categorical data Most analysis methods require continuous input data. The __meta_data__ __data.frame__ contains a character vector (a factor in older R versions) of categories. This package has a function __dummycode__ for converting categorical data to various dummy formats. ```{r} # Default is sum-coding dummycode(meta_data$colour) # Treatment coding dummycode(meta_data$colour, "contr.treatment") # Full dummy-coding (rank deficient) dummycode(meta_data$colour, drop = FALSE) # Replace categorical with dummy-coded, use I() to index by common name meta_data2 <- meta_data meta_data2$colour <- I(dummycode(meta_data$colour, drop = FALSE)) meta_data2 meta_data2$colour ``` # Data structures for analysis including blocks ## Create list of blocks A simple list of blocks can be created using the __list()__ function. Naming of the blocks can be done directly or after creation. ```{r} # Direct approach blocks1 <- list(meta = meta_data2, proteins = proteins, genes = genes) # Two-step approach blocks2 <- list(meta_data2, proteins, genes) names(blocks2) <- c('meta', 'proteins', 'genes') # Same result identical(blocks1, blocks2) # Access by name or number blocks1[['meta']] blocks2[[1]] ``` ## Create data.frame of blocks A __data.frame__ is a convenient storage format for data in R and can handle many types of variables, e.g. numeric, logical, character, factor or matrices. The latter is useful for analyses of data with shared sample mode. ```{r} # Construct block data.frame from list df1 <- block.data.frame(blocks1) # Construct block data.frame from data.frame: # First merge blocks into data.frame my_data <- cbind(meta_data2, proteins, genes) # Then construct block data.frame using named # list of indexes df2 <- block.data.frame(my_data, block_inds = list(meta = 1:2, proteins = 3:5, genes = 6:8)) # Same result identical(df1,df2) # Access by name or number df1[[2]] df2[['proteins']] df1[c(1,3)] df1[-2] df2[c('proteins','genes')] # Use with formula interface (see other vignettes) # sopls(meta ~ proteins + genes, data = df1) # Use with single list interface (see other vignettes) # mfa(df1[c(1,3)], ncomp = 3) ```