## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(HTLR) library(bayesplot) ## ----------------------------------------------------------------------------- SEED <- 1234 n <- 510 p <- 2000 means <- rbind( c(0, 1, 0), c(0, 0, 0), c(0, 0, 1), c(0, 0, 1), c(0, 0, 1), c(0, 0, 1), c(0, 0, 1), c(0, 0, 1), c(0, 0, 1), c(0, 0, 1) ) * 2 means <- rbind(means, matrix(0, p - 10, 3)) A <- diag(1, p) A[1:10, 1:3] <- rbind( c(1, 0, 0), c(2, 1, 0), c(0, 0, 1), c(0, 0, 1), c(0, 0, 1), c(0, 0, 1), c(0, 0, 1), c(0, 0, 1), c(0, 0, 1), c(0, 0, 1) ) set.seed(SEED) dat <- gendata_FAM(n, means, A, sd_g = 0.5, stdx = TRUE) str(dat) ## ----------------------------------------------------------------------------- # require(corrplot) cor(dat$X[ , 1:11]) %>% corrplot::corrplot(tl.pos = "n") ## ----------------------------------------------------------------------------- set.seed(SEED) dat <- split_data(dat$X, dat$y, n.train = 500) str(dat) ## ----------------------------------------------------------------------------- set.seed(SEED) system.time( fit.t <- htlr(dat$x.tr, dat$y.tr) ) print(fit.t) ## ----------------------------------------------------------------------------- set.seed(SEED) system.time( fit.t2 <- htlr(X = dat$x.tr, y = dat$y.tr, prior = htlr_prior("t", df = 1, logw = -20, sigmab0 = 1500), iter = 4000, init = "bcbc", keep.warmup.hist = T) ) print(fit.t2) ## ----------------------------------------------------------------------------- summary(fit.t2, features = c(1:10, 100, 200, 1000, 2000), method = median) ## ----------------------------------------------------------------------------- post.t <- as.matrix(fit.t2, k = 2) ## signal parameters mcmc_intervals(post.t, pars = c("Intercept", "V1", "V2", "V3", "V1000")) ## ----------------------------------------------------------------------------- as.matrix(fit.t2, k = 2, include.warmup = T) %>% mcmc_trace(c("V1", "V1000"), facet_args = list("nrow" = 2), n_warmup = 2000) ## ----------------------------------------------------------------------------- y.class <- predict(fit.t, dat$x.te, type = "class") y.class print(paste0("prediction accuracy of model 1 = ", sum(y.class == dat$y.te) / length(y.class))) y.class2 <- predict(fit.t2, dat$x.te, type = "class") print(paste0("prediction accuracy of model 2 = ", sum(y.class2 == dat$y.te) / length(y.class))) ## ----------------------------------------------------------------------------- predict(fit.t, dat$x.te, type = "response") %>% evaluate_pred(y.true = dat$y.te)