## ----setup, include = FALSE--------------------------------------------------- library(IPV) knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.dpi = 96 ) ## ---- eval = FALSE------------------------------------------------------------ # mydata <- HEXACO[ ,c(2:41, 122:161)] # (1.) HEXACO is a data frame containing raw data # res <- ipv_est(mydata, name = "HA") # (2.) produce a formatted bundle of estimates to use # nested_chart(res, file_name = "test.pdf") # (3.) create a chart with default formatting ## ---- echo = FALSE------------------------------------------------------------ HEXACO_long <- reshape2::melt(cbind(id = row.names(HEXACO), HEXACO[ ,1:240]), id.vars = "id") HEXACO_long$test <- substr(HEXACO_long$variable, 1, 1) HEXACO_long$facet <- substr(HEXACO_long$variable, 3, 6) HEXACO_long$item <- substr(HEXACO_long$variable, 8, 13) HEXACO_long$variable <- NULL head(HEXACO_long) ## ---- echo = FALSE------------------------------------------------------------ HEXACO[1:3, 2:4] ## ---- eval = FALSE------------------------------------------------------------ # # nested case: honesty/humility and agreeableness as "tests" (= sub-pools) # # of an overarching "construct" (= item pool) # res_HA <- ipv_est(dat = HEXACO[ ,c(2:41, 122:161)], name = "HA") # # simple case: agreeableness only # res_A <- ipv_est(dat = HEXACO[ ,c(122:161)], name = "A") ## ---- fig.width=10, fig.height=10, out.height="685px", out.width="685px", dev='png'---- mychart <- item_chart(data = self_confidence) mychart ## ---- eval = FALSE------------------------------------------------------------ # mychart <- item_chart(data = self_confidence, test = "DSSEI", file_name = "DSSEI_item_chart.pdf") ## ---- eval = FALSE------------------------------------------------------------ # item_chart(self_confidence, test = "DSSEI", facet_order = c("Ab", "So", "Ph", "Pb")) ## ----------------------------------------------------------------------------- library(ggplot2) library(cowplot) x <- facet_chart(self_confidence) + coord_fixed( ratio = 1, ylim = c(-3, 3), xlim = c(-3, 3)) y <- facet_chart(self_confidence, test = "RSES") + coord_fixed( ratio = 1, ylim = c(-3, 3), xlim = c(-3, 3)) ## ---- eval = FALSE------------------------------------------------------------ # # Save just as any other ggplot # ggsave(filename = "test.pdf", # plot = plot_grid(plotlist = list(x, y), align = "h"), # width = 20, height = 10) # defaults are optimized for 10x10 inches per chart ## ---- eval=FALSE, fig.width=10, fig.height=10, out.height="685px", out.width="685px", dev='png'---- # mychart <- item_chart( # data = self_confidence, test = "DSSEI", # color = "darkblue", color2 = "darkred") # mychart ## ---- fig.width=10, fig.height=10, out.height="685px", out.width="685px", fig.show='hold', dev='png'---- x <- self_confidence x <- relabel(x, "So", "verylongname") mychart1 <- item_chart(data = x, test = "DSSEI") mychart2 <- item_chart(data = x, test = "DSSEI", dodge = 7) mychart1 mychart2 ## ---- fig.width=10, fig.height=10, out.height="685px", out.width="685px", dev='png'---- mychart <- facet_chart(data = self_confidence, test = "DSSEI") mychart ## ---- fig.width=10, fig.height=10, out.height="685px", out.width="685px", dev='png'---- mychart <- facet_chart( data = self_confidence, test = "DSSEI", cor_labels = FALSE, size_marker = 0) mychart ## ---- fig.width=10, fig.height=10, out.height="685px", out.width="685px", dev='png'---- mychart <- nested_chart(data = self_confidence) mychart ## ---- fig.width=10, fig.height=10, out.height="685px", out.width="685px", dev='png'---- # all axes have the same scaling nested_chart(self_confidence, relative_scaling = 1, tick = 0.2, rotate_tick_label = -.2) # the global axis is twice as large (see dotted circles) nested_chart(self_confidence, relative_scaling = 2, tick = 0.2, rotate_tick_label = -.2) ## ---- fig.width=10, fig.height=10, out.height="685px", out.width="685px", dev='png'---- mychart <- nested_chart( data = self_confidence, subradius = .5, size_facet_labels = 2, size_cor_labels_inner = 1.5) mychart ## ---- fig.width=10, fig.height=10, out.height="685px", out.width="685px", dev='png'---- mychart <- nested_chart( data = self_confidence, subradius = .5, size_facet_labels = 2, size_cor_labels_inner = 1.5, xarrows = FALSE) mychart ## ---- fig.width=10, fig.height=10, out.height="685px", out.width="685px", dev='png'---- mychart <- nested_chart( data = self_confidence, subradius = .5, size_facet_labels = 2, size_cor_labels_inner = 1.5, subrotate_degrees = c(180, 270, 90), dist_construct_label = .7, rotate_test_labels_degrees = c(0, 120, 0)) mychart ## ---- fig.width=10, fig.height=10, out.height="685px", out.width="685px", dev='png'---- mychart <- nested_chart( data = self_confidence, subradius = .5, size_facet_labels = 2, size_cor_labels_inner = 1.5, subrotate_degrees = c(180, 270, 90), dist_construct_label = .7, rotate_test_labels_degrees = c(0, 120, 0), cor_labels_tests = FALSE) mychart ## ---- fig.width=10, fig.height=10, out.height="685px", out.width="685px", dev='png'---- mychart <- nested_chart( data = self_confidence, subradius = .5, size_facet_labels = 2, size_cor_labels_inner = 1.5, subrotate_degrees = c(180, 270, 90), dist_construct_label = .7, rotate_construct_label_degrees = -15, rotate_test_labels_degrees = c(0, 120, 0), size_construct_label = 1.3, size_test_labels = 1.2, width_circles_inner = 1.2, width_circles = 1.2, width_axes_inner = 1.2, width_axes = 1.2) mychart ## ----------------------------------------------------------------------------- str(self_confidence, 2) self_confidence$tests$RSES ## ----------------------------------------------------------------------------- self_confidence$global ## ----------------------------------------------------------------------------- mydata <- input_manual_simple( test_name = "RSES", facet_names = c("Ns", "Ps"), items_per_facet = 5, item_names = c( 2, 5, 6, 8, 9, 1, 3, 4, 7, 10), test_loadings = c( .5806, .5907, .6179, .5899, .6559, .6005, .4932, .4476, .5033, .6431), facet_loadings = c( .6484, .6011, .6988, .6426, .6914, .6422, .5835, .536, .5836, .6791), correlation_matrix = matrix( data = c(1, .69, .69, 1), nrow = 2, ncol = 2)) mydata input_manual_process(mydata) ## ---- eval = FALSE------------------------------------------------------------ # system.file("extdata", "IPV_global.xlsx", package = "IPV", mustWork = TRUE) # system.file("extdata", "IPV_DSSEI.xlsx", package = "IPV", mustWork = TRUE) # system.file("extdata", "IPV_SMTQ.xlsx", package = "IPV", mustWork = TRUE) # system.file("extdata", "IPV_RSES.xlsx", package = "IPV", mustWork = TRUE) ## ----------------------------------------------------------------------------- global <- system.file("extdata", "IPV_global.xlsx", package = "IPV", mustWork = TRUE) tests <- c(system.file("extdata", "IPV_DSSEI.xlsx", package = "IPV", mustWork = TRUE), system.file("extdata", "IPV_SMTQ.xlsx", package = "IPV", mustWork = TRUE), system.file("extdata", "IPV_RSES.xlsx", package = "IPV", mustWork = TRUE)) mydata <- input_excel(global = global, tests = tests) ## ---- eval=FALSE-------------------------------------------------------------- # global <- system.file("extdata", "IPV_global.xlsx", package = "IPV", mustWork = TRUE) # tests <- c(system.file("extdata", "IPV_DSSEI.xlsx", package = "IPV", mustWork = TRUE), # system.file("extdata", "IPV_SMTQ.xlsx", package = "IPV", mustWork = TRUE), # NA) # mydata <- input_excel(global = global, tests = tests) ## ----------------------------------------------------------------------------- # first the global level mydata <- input_manual_nested( construct_name = "Self-Confidence", test_names = c("DSSEI", "SMTQ", "RSES"), items_per_test = c(20, 14, 10), item_names = c( 1, 5, 9, 13, 17, # DSSEI 3, 7, 11, 15, 19, # DSSEI 16, 4, 12, 8, 20, # DSSEI 2, 6, 10, 14, 18, # DSSEI 11, 13, 14, 1, 5, 6, # SMTQ 3, 10, 12, 8, # SMTQ 7, 2, 4, 9, # SMTQ 1, 3, 4, 7, 10, # RSES 2, 5, 6, 8, 9), # RSES construct_loadings = c( .5189, .6055, .618 , .4074, .4442, .5203, .2479, .529 , .554 , .5144, .3958, .5671, .5559, .4591, .4927, .3713, .5941, .4903, .5998, .6616, .4182, .2504, .4094, .3977, .5177, .4603, .3271, .261 , .3614, .4226, .2076, .3375, .5509, .3495, .5482, .4627, .4185, .4185, .5319, .4548, .4773, .4604, .4657, .4986), test_loadings = c( .5694, .6794, .6615, .4142, .4584, # DSSEI .5554, .2165, .5675, .5649, .4752, # DSSEI .443 , .6517, .6421, .545 , .5266, # DSSEI .302 , .6067, .5178, .5878, .6572, # DSSEI .4486, .3282, .4738, .4567, .5986, .5416, # SMTQ .3602, .2955, .3648, .4814, # SMTQ .2593, .4053, .61 , .4121, # SMTQ .6005, .4932, .4476, .5033, .6431, # RSES .5806, .5907, .6179, .5899, .6559), # RSES correlation_matrix = matrix( data = c( 1 , .73, .62, .73, 1, .75, .62, .75, 1), nrow = 3, ncol = 3)) # then add tests individually # test 1 mydata$tests$RSES <- input_manual_simple( test_name = "RSES", facet_names = c("Ns", "Ps"), items_per_facet = c(5, 5), item_names = c( 2, 5, 6, 8, 9, 1, 3, 4, 7, 10), test_loadings = c( .5806, .5907, .6179, .5899, .6559, .6005, .4932, .4476, .5033, .6431), facet_loadings = c( .6484, .6011, .6988, .6426, .6914, .6422, .5835, .536, .5836, .6791), correlation_matrix = matrix( data = c( 1, .69, .69, 1), nrow = 2, ncol = 2)) # test 2 mydata$tests$DSSEI <- input_manual_simple( test_name = "DSSEI", facet_names = c("Ab", "Pb", "Ph", "So"), items_per_facet = 5, item_names = c( 2, 6, 10, 14, 18, 16, 4, 12, 8, 20, 3, 7, 11, 15, 19, 1, 5, 9, 13, 17), test_loadings = c( .302 , .6067, .5178, .5878, .6572, .443 , .6517, .6421, .545 , .5266, .5554, .2165, .5675, .5649, .4752, .5694, .6794, .6615, .4142, .4584), facet_loadings = c( .3347, .6537, .6078, .684 , .735 , .6861, .8746, .7982, .7521, .6794, .7947, .3737, .819 , .7099, .5785, .7293, .8284, .7892, .3101, .4384), correlation_matrix = matrix( data = c( 1, .49, .66, .76, .49, 1, .37, .54, .66, .37, 1, .53, .76, .54, .53, 1), nrow = 4, ncol = 4)) # test 3 mydata$tests$SMTQ <- input_manual_simple( test_name = "SMTQ", facet_names = c("Cf", "Cs", "Ct"), items_per_facet = c(6, 4, 4), item_names = c( 11, 13, 14, 1, 5, 6, 3, 10, 12, 8, 7, 2, 4, 9), test_loadings = c( .4486, .3282, .4738, .4567, .5986, .5416, .3602, .2955, .3648, .4814, .2593, .4053, .61 , .4121), facet_loadings = c( .4995, .3843, .5399, .4562, .6174, .6265, .4601, .3766, .4744, .5255, .3546, .5038, .7429, .4342), correlation_matrix = matrix( data = c( 1, .71, .62, .71, 1, .59, .62, .59, 1), nrow = 3, ncol = 3)) # finally process (as in a simple case) my_processed_data <- input_manual_process(mydata) my_processed_data