## ----------------------------------------------------------------------------- library(LEGIT) example_3way(N=5, sigma=1, logit=FALSE, seed=7) ## ----message=FALSE------------------------------------------------------------ train = example_3way(N=250, sigma=1, logit=FALSE, seed=7) test = example_3way(N=100, sigma=1, logit=FALSE, seed=6) ## ----------------------------------------------------------------------------- fit_default = LEGIT(train$data, train$G, train$E, y ~ G*E*z) summary(fit_default) ## ----------------------------------------------------------------------------- ssres = sum((test$data$y - predict(fit_default, test$data, test$G, test$E))^2) sstotal = sum((test$data$y - mean(test$data$y))^2) R2 = 1 - ssres/sstotal R2 ## ----fig3, fig.height = 5, fig.width = 5-------------------------------------- cov_values = c(3) names(cov_values) = "z" plot(fit_default, cov_values = cov_values,cex.leg=1.4, cex.axis=1.5, cex.lab=1.5) ## ----------------------------------------------------------------------------- g1_bad = rbinom(250,1,.30) g2_bad = rbinom(250,1,.30) g3_bad = rbinom(250,1,.30) g4_bad = rbinom(250,1,.30) g5_bad = rbinom(250,1,.30) train$G = cbind(train$G, g1_bad, g2_bad, g3_bad, g4_bad, g5_bad) ## ----------------------------------------------------------------------------- forward_genes_BIC = stepwise_search(train$data, genes_extra=train$G, env_original=train$E, formula=y ~ E*G*z, search_type="forward", search="genes", search_criterion="BIC", interactive_mode=FALSE) ## ----------------------------------------------------------------------------- backward_genes_AIC = stepwise_search(train$data, genes_original=train$G, env_original=train$E, formula=y ~ E*G*z, search_type="backward", search="genes", search_criterion="AIC", interactive_mode=FALSE) ## ----------------------------------------------------------------------------- forward_genes_BIC = stepwise_search(train$data, genes_extra=train$G, env_original=train$E, formula=y ~ E*G*z, search_type="bidirectional-forward", search="genes", search_criterion="BIC", interactive_mode=TRUE) ## ----------------------------------------------------------------------------- forward_genes_BIC = stepwise_search(train$data, genes_original=train$G[,3,drop=FALSE], genes_extra=train$G[,-3], env_original=train$E, formula=y ~ E*G*z, search_type="bidirectional-forward", search="genes", search_criterion="BIC", interactive_mode=TRUE) ## ----message=FALSE------------------------------------------------------------ library(LEGIT) train = example_2way(N=1000, logit=TRUE, seed=777) ## ----------------------------------------------------------------------------- fit_default = LEGIT(train$data, train$G, train$E, y ~ G*E, family=binomial) summary(fit_default) ## ----fig1, fig.height = 5, fig.width = 5-------------------------------------- cv_5folds_bin = LEGIT_cv(train$data, train$G, train$E, y ~ G*E, cv_iter=1, cv_folds=5, classification=TRUE, family=binomial, seed=777) pROC::plot.roc(cv_5folds_bin$roc_curve[[1]]) ## ----fig2, fig.height = 5, fig.width = 5-------------------------------------- plot(fit_default, cex.leg=1.4, cex.axis=1.5, cex.lab=1.5) ## ----------------------------------------------------------------------------- library(LEGIT) example_3way_3latent(N=5, sigma=1, logit=FALSE, seed=7) ## ----message=FALSE------------------------------------------------------------ train = example_3way_3latent(N=250, sigma=1, logit=FALSE, seed=7) ## ----------------------------------------------------------------------------- fit_default = IMLEGIT(train$data, train$latent_var, y ~ G*E*Z) summary(fit_default) ## ----------------------------------------------------------------------------- g1_bad = rbinom(250,1,.30) g2_bad = rbinom(250,1,.30) g3_bad = rbinom(250,1,.30) g4_bad = rbinom(250,1,.30) g5_bad = rbinom(250,1,.30) G_new = cbind(g1_bad, g2_bad, g3_bad, g4_bad, g5_bad) forward_genes_BIC = stepwise_search_IM(train$data, latent_var_original=train$latent_var, latent_var_extra=list(G=G_new, E=NULL, Z=NULL), formula=y ~ E*G*Z, search_type="forward", search=1, search_criterion="BIC", interactive_mode=FALSE)