## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup, messages = FALSE, include = FALSE--------------------------------- library(LTASR) library(dplyr) library(tidyr) library(ggplot2) library(readr) library(purrr) library(stringr) library(knitr) ## ----message=FALSE, results='hide'-------------------------------------------- #Define exposure cutpoints exp <- exp_strata(var = 'exposure_level', cutpt = c(-Inf, 0, 10000, 20000, Inf), lag = 10) #Read in and format person file person <- person_example %>% mutate(dob = as.Date(dob, format='%m/%d/%Y'), pybegin = as.Date(pybegin, format='%m/%d/%Y'), dlo = as.Date(dlo, format='%m/%d/%Y')) #Read in and format history file history <- history_example %>% mutate(begin_dt = as.Date(begin_dt, format='%m/%d/%Y'), end_dt = as.Date(end_dt, format='%m/%d/%Y')) #Stratify cohort py_table <- get_table_history(persondf = person, rateobj = us_119ucod_recent, historydf = history, exps = list(exp)) ## ----echo=FALSE--------------------------------------------------------------- py_table %>% head() %>% kable() ## ----------------------------------------------------------------------------- #Subset py_table to the highest exposed group py_table_high <- py_table %>% filter(exposure_levelCat == '(2e+04, Inf]') smr_minor_table_high <- smr_minor(py_table_high, us_119ucod_recent) smr_major_table_high <- smr_major(smr_minor_table_high, us_119ucod_recent) ## ----echo=FALSE--------------------------------------------------------------- smr_minor_table_high %>% filter(minor %in% c(55, 52)) %>% head() %>% kable(digits = 2) smr_major_table_high %>% filter(major %in% c(16)) %>% head() %>% kable(digits = 2) ## ----eval=FALSE--------------------------------------------------------------- # #Define the name of the person year table (py_table) # #and the variable to calcualte SMRs accross # pyt <- py_table # var <- 'exposure_levelCat' # # #Loop through levels of the above variable # lvls <- unique(pyt[var][[1]]) # smr_minors <- # map(lvls, # ~ { # pyt %>% # filter(!!sym(var) == .x) %>% # smr_minor(us_119ucod_recent) # }) %>% # setNames(lvls) # # smr_majors <- # map(smr_minors, # ~ smr_major(., us_119ucod_recent))%>% # setNames(names(smr_minors)) # # #Adjust names of sheets # names(smr_minors) <- str_replace_all(names(smr_minors), "\\[|\\]", "_") # names(smr_majors) <- str_replace_all(names(smr_majors), "\\[|\\]", "_") # # #Save results # library(writexl) # write_xlsx(smr_minors, 'C:/SMR_Minors_by_exp.xlsx') # write_xlsx(smr_majors, 'C:/SMR_Majors_by_exp.xlsx')