## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(MAKL) set.seed(64327) #midas df <- matrix(rnorm(6000, 0, 1), nrow = 1000) colnames(df) <- c("F1", "F2", "F3", "F4", "F5", "F6") ## ----------------------------------------------------------------------------- # check colnames(df) for them to be matching with group members groups <- list() groups[[1]] <- c("F1", "F5", "F6") groups[[2]] <- c("F2", "F3", "F4") ## ----------------------------------------------------------------------------- y <- c() for(i in 1:nrow(df)) { if((df[i, 2] + df[i, 3] + df[i, 4]) > 0) { y[i] <- +1 } else { y[i] <- -1 } } ## ----------------------------------------------------------------------------- makl_model <- makl_train(X = df, y = y, D = 2, sigma_N = 1000, CV = 1, membership = groups, lambda_set = c(0.9, 0.8, 0.7, 0.6)) ## ----------------------------------------------------------------------------- makl_model$model$coefficients ## ----------------------------------------------------------------------------- df_test <- matrix(rnorm(600, 0, 1), nrow = 100) colnames(df_test) <- c("F1", "F2", "F3", "F4", "F5", "F6") y_test <- c() for(i in 1:nrow(df_test)) { if((df_test[i, 2] + df_test[i, 3] + df_test[i, 4]) > 0) { y_test[i] <- +1 } else { y_test[i] <- -1 } } result <-makl_test(X = df_test, y = y_test, makl_model = makl_model) ## ----------------------------------------------------------------------------- result$auroc_kernel_number