## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", echo = TRUE, fig.width = 6, message = FALSE, warning = FALSE ) ## ----setup, include = FALSE--------------------------------------------------- require(MBMethPred) ## ----------------------------------------------------------------------------- # set.seed(1234) # fac <- ncol(Data1) # NewData <- sample(data.frame(t(Data1[,-fac])),10) # NewData <- cbind(rownames(NewData), NewData) # colnames(NewData)[1] <- "ID" # write.csv(NewData, "NewData.csv", quote = FALSE, row.names = FALSE) # methyl <- ReadMethylFile(File = "NewData.csv") ## ----fig.width= 8, fig.height=5----------------------------------------------- data <- Data2[1:20,] data <- cbind(rownames(data), data) colnames(data)[1] <- "ID" BoxPlot(File = data, Projname = NULL) ## ----------------------------------------------------------------------------- data <- data.frame(t(Data2[1:100,])) data <- cbind(rownames(data), data) colnames(data)[1] <- "ID" TSNEPlot(File = data, NCluster = 4) ## ----------------------------------------------------------------------------- # rgl.snapshot('tsne3d.png', fmt = 'png') ## ----------------------------------------------------------------------------- # data(Data2) # Gene expression # Data2 <- cbind(rownames(Data2), Data2) # colnames(Data2)[1] <- "ID" # write.csv(Data2, "Data2.csv", row.names = FALSE) # Data2 <- ReadSNFData(File = "Data2.csv") ## ----------------------------------------------------------------------------- data(RLabels) # Real labels data(Data2) # Methylation data(Data3) # Gene expression snf <- SimilarityNetworkFusion(Files = list(Data2, Data3), NNeighbors = 13, Sigma = 0.75, NClusters = 4, CLabels = c("Group4", "SHH", "WNT", "Group3"), RLabels = RLabels, Niterations = 60) snf ## ----------------------------------------------------------------------------- set.seed(1234) fac <- ncol(Data1) NewData <- sample(data.frame(t(Data1[,-fac])),10) NewData <- cbind(rownames(NewData), NewData) colnames(NewData)[1] <- "ID" svm <- SupportVectorMachineModel(SplitRatio = 0.8, CV = 10, NCores = 1, NewData = NewData) ModelMetrics(Model = svm) NewDataPredictionResult(Model = svm) ## ----------------------------------------------------------------------------- set.seed(1234) fac <- ncol(Data1) NewData <- sample(data.frame(t(Data1[,-fac])),10) NewData <- cbind(rownames(NewData), NewData) colnames(NewData)[1] <- "ID" knn <- KNearestNeighborModel(SplitRatio = 0.8, CV = 10, K = 3, NCores = 1, NewData = NewData) ModelMetrics(Model = knn) NewDataPredictionResult(Model = knn) ## ----------------------------------------------------------------------------- set.seed(1234) fac <- ncol(Data1) NewData <- sample(data.frame(t(Data1[,-fac])),10) NewData <- cbind(rownames(NewData), NewData) colnames(NewData)[1] <- "ID" rf <- RandomForestModel(SplitRatio = 0.8, CV = 10, NTree = 100, NCores = 1, NewData = NewData) ModelMetrics(Model = rf) NewDataPredictionResult(Model = rf) ## ----------------------------------------------------------------------------- set.seed(1234) fac <- ncol(Data1) NewData <- sample(data.frame(t(Data1[,-fac])),10) NewData <- cbind(rownames(NewData), NewData) colnames(NewData)[1] <- "ID" xgboost <- XGBoostModel(SplitRatio = 0.8, CV = 10, NCores = 1, NewData = NewData) ModelMetrics(Model = xgboost) NewDataPredictionResult(Model = xgboost) ## ----------------------------------------------------------------------------- set.seed(1234) fac <- ncol(Data1) NewData <- sample(data.frame(t(Data1[,-fac])),10) NewData <- cbind(rownames(NewData), NewData) colnames(NewData)[1] <- "ID" lda <- LinearDiscriminantAnalysisModel(SplitRatio = 0.8, CV = 10, NCores = 1, NewData = NewData) ModelMetrics(Model = lda) NewDataPredictionResult(Model = lda) ## ----------------------------------------------------------------------------- set.seed(1234) fac <- ncol(Data1) NewData <- sample(data.frame(t(Data1[,-fac])),10) NewData <- cbind(rownames(NewData), NewData) colnames(NewData)[1] <- "ID" nb <- NaiveBayesModel(SplitRatio = 0.8, CV = 10, Threshold = 0.8, NCores = 1, NewData = NewData) ModelMetrics(Model = nb) NewDataPredictionResult(Model = nb) ## ----------------------------------------------------------------------------- # set.seed(1234) # fac <- ncol(Data1) # NewData <- sample(data.frame(t(Data1[,-fac])),10) # NewData <- cbind(rownames(NewData), NewData) # colnames(NewData)[1] <- "ID" # ann <- NeuralNetworkModel(Epochs = 100, # NewData = NewData, # InstallTensorFlow = TRUE) # ModelMetrics(Model = ann) # NewDataPredictionResult(Model = ann)