## ----example, eval = FALSE----------------------------------------------- # ecc(x, y) %>% predict(newdata) %>% [summary|validate] ## ----setup--------------------------------------------------------------- library(MLPUGS) data("movies") ## ----data_head, eval = FALSE--------------------------------------------- # head(movies) ## ----formatted_data_head, echo = FALSE----------------------------------- knitr::kable(head(movies)) ## ----load_datasets------------------------------------------------------- data("movies_train"); data("movies_test") ## ----train, eval = FALSE------------------------------------------------- # fit <- ecc(movies_train[, -(1:3)], movies_train[1:3], 3, randomForest::randomForest, # replace = TRUE) ## ----predict_rf, eval = FALSE-------------------------------------------- # pugs <- predict(fit, movies_test[, -(1:3)], burn.in = 500, n.iters = 1500, thin = 15, # .f = randomForest:::predict.randomForest, type = "prob") ## ----gather_prob, eval = FALSE------------------------------------------- # y_pred <- summary(pugs, type = "prob") ## ----compare_prob, echo = FALSE, eval = FALSE---------------------------- # rownames(y_pred) <- rownames(movies_test) # knitr::kable(head(y_pred, 5), digits = 3) ## ----gather_class, eval = FALSE------------------------------------------ # y_pred <- summary(pugs, type = "class") ## ----compare_class, echo = FALSE, eval = FALSE--------------------------- # rownames(y_pred) <- rownames(movies_test) # knitr::kable(head(y_pred, 5), digits = 3) ## ----echo=FALSE---------------------------------------------------------- knitr::kable(movies_test[1:5, 1:3], caption="**Table 4**: True classifications for the first 5 movies in the test (validation) set.") ## ----eval=FALSE---------------------------------------------------------- # validate(pugs, movies_test[, 1:3]) ## ----eval=FALSE,echo=FALSE----------------------------------------------- # temp <- as.data.frame(t(validate(pugs, movies_test[, 1:3]))) # colnames(temp) <- "Measurement" # temp <- cbind(temp, Description = c( # "provides a steep penalty for predictions that are both confident and wrong", # "average per-obs exact classification", # "average per-obs classification with partial matches", # "per-label classification with partial matches", # "average per-example per-class total error")) # knitr::kable(temp, digits = 4)