## ----setup, include = FALSE---------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----fig.width=5,fig.height=5-------------------------------------------- library(MLeval) ## ordinary input head(preds) ## run MLeval test1 <- evalm(preds,plots='r',rlinethick=0.8,fsize=8,bins=8) ## ----fig.width=5,fig.height=5-------------------------------------------- test1$stdres ## ----fig.width=5,fig.height=5-------------------------------------------- test1$optres ## ----fig.width=5,fig.height=3.5------------------------------------------ test1$cc ## ----fig.width=5,fig.height=3-------------------------------------------- head(test1$probs[[1]]) ## ----fig.width=5,fig.height=5-------------------------------------------- library(MLeval) ## levels(as.factor(predsc$Group)) head(predsc) ## run MLeval test1 <- evalm(predsc,plots='r',rlinethick=0.8,fsize=8,bins=8) ## ----fig.width=5,fig.height=5-------------------------------------------- library(MLeval) ## run cross validation on Sonar data # fitControl <- trainControl( # method = "repeatedcv", # summaryFunction=twoClassSummary, # classProbs=T, # savePredictions = T) # fit1 <- train(Class ~ ., data = Sonar, # method = "ranger", # trControl = fitControl,metric = "ROC", # verbose = FALSE) ## evaluate test1 <- evalm(fit1,plots='r',rlinethick=0.8,fsize=8) ## ----fig.width=5,fig.height=5-------------------------------------------- library(MLeval) # Caret train function output object -- repeated cross validation # run caret # fitControl <- trainControl( # method = "repeatedcv", # summaryFunction=twoClassSummary, # classProbs=T, # savePredictions = T) # fit2 <- train(Class ~ ., data = Sonar, # method = "gbm", # trControl = fitControl,metric = "ROC", # verbose = FALSE) # plot rocs test4 <- evalm(list(fit1,fit2),gnames=c('ranger','gbm'),rlinethick=0.8,fsize=8, plots='r') ## ----fig.width=5,fig.height=5-------------------------------------------- test4$optres ## ----fig.width=5,fig.height=5-------------------------------------------- library(MLeval) # im <- twoClassSim(2000, intercept = -25, linearVars = 20) # table(im$Class) # # fitControl <- trainControl( # method = "cv", # summaryFunction=prSummary, # classProbs=T, # savePredictions = T, # verboseIter = F) # im_fit <- train(Class ~ ., data = im, # method = "ranger", # metric = "AUC", # trControl = fitControl) x <- evalm(im_fit,rlinethick=0.8,fsize=8,plots=c()) ## ----fig.width=5,fig.height=5-------------------------------------------- x$optres ## ----fig.width=5,fig.height=5-------------------------------------------- x$roc ## ----fig.width=5,fig.height=5-------------------------------------------- x$proc ## ----fig.width=5,fig.height=5-------------------------------------------- x$prg ## ----fig.width=5,fig.height=5-------------------------------------------- library(MLeval) # # set up custom function for the log likelihood # LLSummary <- function(data, lev = NULL, model = NULL){ # LLi <- LL(data,positive='R') # names(LLi) <- "LL" # out <- LLi # out # } # # fitControl <- trainControl( # method = "cv", # summaryFunction = LLSummary, # classProbs=T, # savePredictions = T, # verboseIter = T) # fit3 <- train(Class ~ ., data = Sonar, # method = "ranger", # trControl = fitControl,metric = "LL", # verbose = FALSE) y <- evalm(fit3,rlinethick=0.8,fsize=8,plots=c('prg')) ## ----fig.width=5,fig.height=3.5------------------------------------------ y$cc