## ---- message=FALSE, warning=FALSE-------------------------------------------- library(MRFcov) data("Bird.parasites") ## ----message=F, warning=FALSE, eval = FALSE----------------------------------- # #Not run # #install.packages(dplyr) # data.paras = data.frame(data.paras) %>% # dplyr::group_by(Capturesession,Genus) %>% # dplyr::summarise(count = dlyr::n()) %>% # dplyr::mutate(prop.zos = count / sum(count)) %>% # dplyr::left_join(data.paras) %>% # dplyr::ungroup() %>% dplyr::filter(Genus == 'Zosterops') %>% # dplyr::mutate(scale.prop.zos = as.vector(scale(prop.zos))) # data.paras <- data.paras[, c(12:15, 23)] ## ----eval=FALSE--------------------------------------------------------------- # help("Bird.parasites") # View(Bird.parasites) ## ----------------------------------------------------------------------------- MRF_fit <- MRFcov(data = Bird.parasites[, c(1:4)], n_nodes = 4, family = 'binomial') ## ----------------------------------------------------------------------------- plotMRF_hm(MRF_mod = MRF_fit, main = 'MRF (no covariates)', node_names = c('H. zosteropis', 'H. killangoi', 'Plasmodium', 'Microfilaria')) ## ----------------------------------------------------------------------------- net <- igraph::graph.adjacency(MRF_fit$graph, weighted = T, mode = "undirected") igraph::plot.igraph(net, layout = igraph::layout.circle, edge.width = abs(igraph::E(net)$weight), edge.color = ifelse(igraph::E(net)$weight < 0, 'blue', 'red')) ## ----------------------------------------------------------------------------- MRF_mod <- MRFcov(data = Bird.parasites, n_nodes = 4, family = 'binomial') ## ----------------------------------------------------------------------------- plotMRF_hm(MRF_mod = MRF_mod) ## ----------------------------------------------------------------------------- MRF_mod$key_coefs$Hzosteropis ## ----------------------------------------------------------------------------- fake.dat <- Bird.parasites fake.dat$Microfilaria <- rbinom(nrow(Bird.parasites), 1, 0.8) fake.preds <- predict_MRF(data = fake.dat, MRF_mod = MRF_mod) ## ----------------------------------------------------------------------------- H.zos.pred.prev <- sum(fake.preds$Binary_predictions[, 'Hzosteropis']) / nrow(fake.preds$Binary_predictions) Plas.pred.prev <- sum(fake.preds$Binary_predictions[, 'Plas']) / nrow(fake.preds$Binary_predictions) Plas.pred.prev ## ----------------------------------------------------------------------------- mod_fits <- cv_MRF_diag_rep(data = Bird.parasites, n_nodes = 4, n_cores = 1, family = 'binomial', plot = F, compare_null = T, n_folds = 10) # CRF (with covariates) model sensitivity quantile(mod_fits$mean_sensitivity[mod_fits$model == 'CRF'], probs = c(0.05, 0.95)) # MRF (no covariates) model sensitivity quantile(mod_fits$mean_sensitivity[mod_fits$model != 'CRF'], probs = c(0.05, 0.95)) ## ----------------------------------------------------------------------------- booted_MRF <- bootstrap_MRF(data = Bird.parasites, n_nodes = 4, family = 'binomial', n_bootstraps = 10, n_cores = 1, sample_prop = 0.9) ## ----------------------------------------------------------------------------- booted_MRF$mean_key_coefs$Hzosteropis ## ----------------------------------------------------------------------------- booted_MRF$mean_key_coefs$Hkillangoi ## ----------------------------------------------------------------------------- booted_MRF$mean_key_coefs$Plas ## ----------------------------------------------------------------------------- booted_MRF$mean_key_coefs$Microfilaria ## ----------------------------------------------------------------------------- adj_mats <- predict_MRFnetworks(data = Bird.parasites, MRF_mod = booted_MRF, metric = 'eigencentrality', cutoff = 0.33) colnames(adj_mats) <- colnames(Bird.parasites[, 1:4]) apply(adj_mats, 2, summary) ## ----eval = FALSE------------------------------------------------------------- # Latitude <- sample(seq(120, 140, length.out = 100), nrow(Bird.parasites), TRUE) # Longitude <- sample(seq(-19, -22, length.out = 100), nrow(Bird.parasites), TRUE) # coords <- data.frame(Latitude = Latitude, Longitude = Longitude) ## ----eval = FALSE------------------------------------------------------------- # CRFmod_spatial <- MRFcov_spatial(data = Bird.parasites, n_nodes = 4, # family = 'binomial', coords = coords) ## ----eval = FALSE------------------------------------------------------------- # CRFmod_spatial$key_coefs$Hzosteropis ## ----eval = FALSE------------------------------------------------------------- # cv_MRF_diag_rep_spatial(data = Bird.parasites, n_nodes = 4, # n_cores = 3, family = 'binomial', plot = T, compare_null = T, # coords = coords) ## ---- message=FALSE, warning=FALSE-------------------------------------------- library(MRFcov) data("Bird.parasites") ## ----message=F, warning=FALSE, eval = FALSE----------------------------------- # #Not run # #install.packages(dplyr) # data.paras = data.frame(data.paras) %>% # dplyr::group_by(Capturesession,Genus) %>% # dplyr::summarise(count = dlyr::n()) %>% # dplyr::mutate(prop.zos = count / sum(count)) %>% # dplyr::left_join(data.paras) %>% # dplyr::ungroup() %>% dplyr::filter(Genus == 'Zosterops') %>% # dplyr::mutate(scale.prop.zos = as.vector(scale(prop.zos))) # data.paras <- data.paras[, c(12:15, 23)] ## ----eval=FALSE--------------------------------------------------------------- # help("Bird.parasites") # View(Bird.parasites) ## ----------------------------------------------------------------------------- MRF_fit <- MRFcov(data = Bird.parasites[, c(1:4)], n_nodes = 4, family = 'binomial') ## ----------------------------------------------------------------------------- plotMRF_hm(MRF_mod = MRF_fit, main = 'MRF (no covariates)', node_names = c('H. zosteropis', 'H. killangoi', 'Plasmodium', 'Microfilaria')) ## ----------------------------------------------------------------------------- net <- igraph::graph.adjacency(MRF_fit$graph, weighted = T, mode = "undirected") igraph::plot.igraph(net, layout = igraph::layout.circle, edge.width = abs(igraph::E(net)$weight), edge.color = ifelse(igraph::E(net)$weight < 0, 'blue', 'red')) ## ----------------------------------------------------------------------------- MRF_mod <- MRFcov(data = Bird.parasites, n_nodes = 4, family = 'binomial') ## ----------------------------------------------------------------------------- plotMRF_hm(MRF_mod = MRF_mod) ## ----------------------------------------------------------------------------- MRF_mod$key_coefs$Hzosteropis ## ----------------------------------------------------------------------------- fake.dat <- Bird.parasites fake.dat$Microfilaria <- rbinom(nrow(Bird.parasites), 1, 0.8) fake.preds <- predict_MRF(data = fake.dat, MRF_mod = MRF_mod) ## ----------------------------------------------------------------------------- H.zos.pred.prev <- sum(fake.preds$Binary_predictions[, 'Hzosteropis']) / nrow(fake.preds$Binary_predictions) Plas.pred.prev <- sum(fake.preds$Binary_predictions[, 'Plas']) / nrow(fake.preds$Binary_predictions) Plas.pred.prev ## ----------------------------------------------------------------------------- mod_fits <- cv_MRF_diag_rep(data = Bird.parasites, n_nodes = 4, n_cores = 1, family = 'binomial', plot = F, compare_null = T, n_folds = 10) # CRF (with covariates) model sensitivity quantile(mod_fits$mean_sensitivity[mod_fits$model == 'CRF'], probs = c(0.05, 0.95)) # MRF (no covariates) model sensitivity quantile(mod_fits$mean_sensitivity[mod_fits$model != 'CRF'], probs = c(0.05, 0.95)) ## ----------------------------------------------------------------------------- booted_MRF <- bootstrap_MRF(data = Bird.parasites, n_nodes = 4, family = 'binomial', n_bootstraps = 10, n_cores = 1, sample_prop = 0.9) ## ----------------------------------------------------------------------------- booted_MRF$mean_key_coefs$Hzosteropis ## ----------------------------------------------------------------------------- booted_MRF$mean_key_coefs$Hkillangoi ## ----------------------------------------------------------------------------- booted_MRF$mean_key_coefs$Plas ## ----------------------------------------------------------------------------- booted_MRF$mean_key_coefs$Microfilaria ## ----------------------------------------------------------------------------- adj_mats <- predict_MRFnetworks(data = Bird.parasites, MRF_mod = booted_MRF, metric = 'eigencentrality', cutoff = 0.33) colnames(adj_mats) <- colnames(Bird.parasites[, 1:4]) apply(adj_mats, 2, summary) ## ----eval = FALSE------------------------------------------------------------- # Latitude <- sample(seq(120, 140, length.out = 100), nrow(Bird.parasites), TRUE) # Longitude <- sample(seq(-19, -22, length.out = 100), nrow(Bird.parasites), TRUE) # coords <- data.frame(Latitude = Latitude, Longitude = Longitude) ## ----eval = FALSE------------------------------------------------------------- # CRFmod_spatial <- MRFcov_spatial(data = Bird.parasites, n_nodes = 4, # family = 'binomial', coords = coords) ## ----eval = FALSE------------------------------------------------------------- # CRFmod_spatial$key_coefs$Hzosteropis ## ----eval = FALSE------------------------------------------------------------- # cv_MRF_diag_rep_spatial(data = Bird.parasites, n_nodes = 4, # n_cores = 3, family = 'binomial', plot = T, compare_null = T, # coords = coords)