## ----------------------------------------------------------------------------- library(MSiP) ## ----------------------------------------------------------------------------- data("SampleDatInput") head(SampleDatInput) ## ----------------------------------------------------------------------------- datScoring <- cPASS(SampleDatInput) head(datScoring) ## ----------------------------------------------------------------------------- datScoring <- diceCoefficient(SampleDatInput) head(datScoring) ## ----------------------------------------------------------------------------- #Jaccard coefficient datScoring <- jaccardCoefficient(SampleDatInput) head(datScoring) #Simpson coefficient datScoring <- simpsonCoefficient(SampleDatInput) head(datScoring) #Overlap score datScoring <- simpsonCoefficient(SampleDatInput) head(datScoring) ## ----------------------------------------------------------------------------- datScoring <- Weighted.matrixModel(SampleDatInput) head(datScoring) ## ----------------------------------------------------------------------------- data("testdfClassifier") head(testdfClassifier) ## ----rfTrain output figure, echo=FALSE, fig.height=4, fig.width=5, message=FALSE, warning=FALSE, paged.print=FALSE---- #only generate the pr.curve predidcted_RF <- rfTrain(testdfClassifier,impute = FALSE, p = 0.3, parameterTuning = FALSE, mtry = seq(from = 1, to = 5, by = 1), min_node_size = seq(from = 1, to = 5, by = 1), splitrule =c("gini"),metric = "Accuracy", resampling.method = "repeatedcv",iter = 5,repeats = 5, pr.plot = TRUE, roc.plot = FALSE ) ## ----------------------------------------------------------------------------- #positive score corresponds to the level of support for the pair of proteins to be true positive #negative score corresponds to the level of support for the pair of proteins to be true negative head(predidcted_RF) ## ----------------------------------------------------------------------------- #only generate the ROC curve predidcted_SVM <- svmTrain(testdfClassifier,impute = FALSE,p = 0.3,parameterTuning = FALSE, cost = seq(from = 2, to = 10, by = 2), gamma = seq(from = 0.01, to = 0.10, by = 0.02), kernel = "radial",ncross = 10, pr.plot = FALSE, roc.plot = TRUE ) ## ----------------------------------------------------------------------------- #positive score corresponds to the level of support for the pair of proteins to be true positive #negative score corresponds to the level of support for the pair of proteins to be true negative head(predidcted_SVM)