## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.align='center' ) ## ----include = TRUE----------------------------------------------------------- MaxWiK::Data.2D$X[1:4, ] str(MaxWiK::Data.2D$X) ## ----echo=FALSE, include = TRUE, fig.height=4, fig.width=4-------------------- library(ggplot2) df = MaxWiK::Data.2D$X; th = MaxWiK::Data.2D$sampling$theme.ggplot obs = MaxWiK::Data.2D$observation$x0 ggplot(data = df, mapping = aes( x = par.sim.X1, y = par.sim.X2) ) + geom_point(size = 0.3) + th + annotate('point', x= obs[1], y = obs[2] , colour="blue", shape = 4, size = 4) ## ----include = TRUE----------------------------------------------------------- cols = c(1:4, 9:16) df = as.data.frame( MaxWiK::Data.2D$ABC$Matrix.Voronoi[ 1:4, cols ] ) names( df ) = cols print( df ) ## ----include = TRUE----------------------------------------------------------- MaxWiK::Data.2D$ABC$result.MaxWiK$kernel_mean_embedding ## ----include = TRUE----------------------------------------------------------- MaxWiK::Data.2D$ABC$result.MaxWiK$similarity[1:20] ## ----include = TRUE----------------------------------------------------------- MaxWiK::Data.2D$ABC$result.MaxWiK$Matrix_iKernel[1:4,] ## ----echo=FALSE, include = TRUE----------------------------------------------- str(MaxWiK::Data.2D$sampling$MaxWiK$results) ## ----echo=FALSE, include = TRUE----------------------------------------------- str(MaxWiK::Data.2D$sampling$MaxWiK$best) ## ----include = TRUE, echo=TRUE, eval=FALSE------------------------------------ # MaxWiK::MaxWiK_templates(dir = tempdir()) ## ----include = TRUE, echo=TRUE, eval=FALSE------------------------------------ # example.2D = MaxWiK::Data.2D # obs = as.data.frame( t ( example.2D$observation$A ) ) # Matrix.Voronoi = example.2D$ABC$Matrix.Voronoi # res.MaxWik = get.MaxWiK( psi = example.2D$ABC$hyperparameters$psi, # t = example.2D$ABC$hyperparameters$t, # param = example.2D$X, # stat.sim = example.2D$Y, # stat.obs = obs, # talkative = TRUE, # check_pos_def = TRUE, # Matrix_Voronoi = Matrix.Voronoi ) ## ----include = TRUE, echo=TRUE, eval=FALSE------------------------------------ # w.sim = which(res.MaxWik$similarity > 0 ) # posteriori.MaxWiK = Data.2D$X[ w.sim, ] ## ----include = TRUE, eval=TRUE, echo=FALSE, fig.height=3, fig.width=4.5------- library(ggplot2) library(MaxWiK) obs=MaxWiK::Data.2D$observation res.MaxWik = MaxWiK::Data.2D$ABC$result.MaxWiK w.sim = which(res.MaxWik$similarity > 0 ) posteriori.MaxWiK = MaxWiK::Data.2D$X[ w.sim, ] MaxWiK::MaxWiK.ggplot.density( title = ' Posteriori distribution of X1 parameter', datafr1 = posteriori.MaxWiK, datafr2 = NULL, var.df = 'par.sim.X1', obs.true = obs$x0[ 1 ], best.sim = NULL ) ## ----include = TRUE, eval=TRUE, echo=FALSE, fig.height=3, fig.width=4.5------- library(ggplot2) library(MaxWiK) obs=MaxWiK::Data.2D$observation res.MaxWik = MaxWiK::Data.2D$ABC$result.MaxWiK w.sim = which(res.MaxWik$similarity > 0 ) posteriori.MaxWiK = MaxWiK::Data.2D$X[ w.sim, ] MaxWiK::MaxWiK.ggplot.density( title = ' Posteriori distribution of X2 parameter', datafr1 = posteriori.MaxWiK, datafr2 = NULL, var.df = 'par.sim.X2', obs.true = obs$x0[ 2 ], best.sim = NULL ) ## ----include = TRUE, echo=TRUE, eval=FALSE------------------------------------ # example.2D = MaxWiK::Data.2D # obs = as.data.frame( t ( example.2D$observation$A ) ) # res.MaxWik = MaxWiK::Data.2D$ABC$result.MaxWiK # meta.sampling = meta_sampling( psi = example.2D$ABC$hyperparameters$psi, # t = example.2D$ABC$hyperparameters$t, # param = example.2D$X, # stat.sim = example.2D$Y, # stat.obs = obs, # talkative = TRUE, # check_pos_def = TRUE, # n_bullets = 42, # n_best = 12, # halfwidth = 0.5, # epsilon = 0.001, # rate = 0.2, # max_iteration = 10, # save_web = TRUE, # use.iKernelABC = res.MaxWik ) ## ----include = TRUE, echo=TRUE, eval=FALSE------------------------------------ # network = unique.data.frame( do.call(rbind.data.frame, meta.sampling$spiderweb ) ) ## ----echo=FALSE, include = TRUE, fig.height=3, fig.width=5-------------------- library('ggplot2') th = MaxWiK::Data.2D$sampling$theme.ggplot meta.sampling = MaxWiK::Data.2D$metasampling$result network = unique.data.frame( do.call(rbind.data.frame, meta.sampling$spiderweb ) ) obs = MaxWiK::Data.2D$observation w = which(MaxWiK::Data.2D$metasampling$result$iKernelABC$similarity > 0) posteriori.MaxWiK = MaxWiK::Data.2D$X[ w, ] MaxWiK::MaxWiK.ggplot.density( title = ' Posteriori distribution of X1 parameter', datafr1 = posteriori.MaxWiK, datafr2 = network, var.df = 'par.sim.X1', obs.true = obs$x0[ 1 ], best.sim = as.numeric( meta.sampling$par.best[ 1 ] ) ) ## ----echo=FALSE, include = TRUE, fig.height=3, fig.width=5-------------------- library('ggplot2') th = MaxWiK::Data.2D$sampling$theme.ggplot meta.sampling = MaxWiK::Data.2D$metasampling$result network = unique.data.frame( do.call(rbind.data.frame, meta.sampling$spiderweb ) ) obs = MaxWiK::Data.2D$observation w = which(MaxWiK::Data.2D$metasampling$result$iKernelABC$similarity > 0) posteriori.MaxWiK = MaxWiK::Data.2D$X[ w, ] MaxWiK::MaxWiK.ggplot.density( title = ' Posteriori distribution of X2 parameter', datafr1 = posteriori.MaxWiK, datafr2 = network, var.df = 'par.sim.X2', obs.true = obs$x0[ 2 ], best.sim = as.numeric( meta.sampling$par.best[ 2 ] ) ) ## ----include = TRUE, echo=TRUE, eval=FALSE------------------------------------ # do.call( what = model, args = c( arg0, list( x = c(5, 7) ) ) ) ## ----include = TRUE, echo=TRUE, eval=FALSE------------------------------------ # smpl.2D = MaxWiK::Data.2D$sampling # stat.sim = MaxWiK::Data.2D$Y # par.sim = MaxWiK::Data.2D$X # sampling.res = sampler_MaxWiK( stat.obs = smpl.2D$stat.obs, # stat.sim = stat.sim, # par.sim = par.sim, # model = smpl.2D$model_function, # arg0 = smpl.2D$model_par, # size = 1600, # psi_t = smpl.2D$psi_t, # epsilon = 1E-10, # check_err = FALSE, # nmax = 60, # include_top = TRUE, # slowly = TRUE, # rate = 0.05, # n_simulation_stop = 1000, # include_web_rings = F, # number_of_nodes_in_ring = 1 ) ## ----include = TRUE, echo=TRUE, eval=FALSE------------------------------------ # MSE = data.frame( sim_ID = sampling.res$results$sim_ID, # MSE = sampling.res$results$mse ) # X12 = data.frame( sim_ID = sampling.res$results$sim_ID, # X1 = sampling.res$results$par.sim.X1, # X2 = sampling.res$results$par.sim.X2 ) ## ----echo=FALSE, include = TRUE, fig.height=3, fig.width=5-------------------- library('ggplot2') MSE = MaxWiK::Data.2D$sampling$MSE obs = MaxWiK::Data.2D$observation th = theme( plot.title = element_text(color="red", size=12, face="bold.italic"), axis.title.x = element_text(color="black", size=13, face="bold"), axis.title.y = element_text(color="black", size=13, face="bold"), axis.text = element_text(color="black", size=11 ) ) ggplot(data = MSE, aes( x, y ) ) + geom_line( linewidth = 0.7 ) + scale_y_log10() + geom_smooth(method = "lm", alpha = .5, formula= y~x ) + ylab("Mean Squared Error") + xlab("Number of simulations") + th ## ----echo=FALSE, include = TRUE, fig.height=3, fig.width=5-------------------- library('ggplot2') X12 = MaxWiK::Data.2D$sampling$X12 obs = MaxWiK::Data.2D$observation th = theme( plot.title = element_text(color="red", size=12, face="bold.italic"), axis.title.x = element_text(color="black", size=13, face="bold"), axis.title.y = element_text(color="black", size=13, face="bold"), axis.text = element_text(color="black", size=11 ) ) ggplot(data = X12, aes( i ) ) + geom_line(aes(y = x1 ), linewidth = 0.5 ) + geom_line(aes(y = x2 ), linewidth = 0.5 ) + geom_hline( aes(yintercept= obs$x0[1]), color='red', linetype=2, linewidth=0.4) + geom_hline( aes(yintercept= obs$x0[2]), color='red', linetype=2, linewidth=0.4) + ylab("Parameters X1 and X2") + xlab("Number of simulations") + th ## ----include = TRUE, echo=TRUE, eval=FALSE------------------------------------ # pred.input = MaxWiK::Data.2D$predictor$result$input.parameters # stat.sim = MaxWiK::Data.2D$Y # par.sim = MaxWiK::Data.2D$X # new.param = as.data.frame( t( MaxWiK::Data.2D$observation$x0 ) ) # iKernelABC = MaxWiK::Data.2D$predictor$result$iKernelABC # predictor = MaxWiK.predictor( psi = pred.input$psi, # t = pred.input$t, # param = par.sim, # stat.sim = stat.sim, # new.param = new.param, # talkative = FALSE, # check_pos_def = FALSE , # n_bullets = 42, # n_best = 12, # halfwidth = 0.5, # epsilon = 0.001, # rate = 0.2, # max_iteration = 10, # save_web = TRUE, # use.iKernelABC = iKernelABC # ) ## ----include = TRUE, echo=TRUE, eval=FALSE------------------------------------ # predictor$prediction.best ## ----include = TRUE, echo=TRUE, eval=FALSE------------------------------------ # pred.network = unique.data.frame( do.call(rbind.data.frame, predictor$spiderweb ) ) ## ----include = TRUE, echo=TRUE, eval=FALSE------------------------------------ # pred.network = apply_range( diapason = c(0,1000), input.data = pred.network ) # predictor$prediction.best = apply_range( diapason = c(0,1000), # input.data = predictor$prediction.best ) ## ----echo=FALSE, include = TRUE, fig.height=3, fig.width=5-------------------- library('ggplot2') posteriori.pred.MaxWiK = MaxWiK::Data.2D$predictor$posteriori.MaxWiK pred.network = MaxWiK::Data.2D$predictor$network pred.network = apply_range( diapason = c(0,1000), input.data = pred.network ) obs = MaxWiK::Data.2D$observation best.sim = MaxWiK::Data.2D$predictor$result$prediction.best best.sim = apply_range( diapason = c(0,1000), input.data = best.sim ) MaxWiK::MaxWiK.ggplot.density( title = ' Posteriori distribution of Y1 parameter', datafr1 = posteriori.pred.MaxWiK, datafr2 = pred.network, var.df = 'stat.sim.Y1', obs.true = obs$A[ 1 ], best.sim = as.numeric( best.sim[ 1 ] ) ) ## ----echo=FALSE, include = TRUE, fig.height=3, fig.width=5-------------------- library('ggplot2') posteriori.pred.MaxWiK = MaxWiK::Data.2D$predictor$posteriori.MaxWiK pred.network = MaxWiK::Data.2D$predictor$network pred.network = apply_range( diapason = c(0,1000), input.data = pred.network ) obs = MaxWiK::Data.2D$observation best.sim = MaxWiK::Data.2D$predictor$result$prediction.best best.sim = apply_range( diapason = c(0,1000), input.data = best.sim ) MaxWiK::MaxWiK.ggplot.density( title = ' Posteriori distribution of Y2 parameter', datafr1 = posteriori.pred.MaxWiK, datafr2 = pred.network, var.df = 'stat.sim.Y2', obs.true = obs$A[ 2 ], best.sim = as.numeric( best.sim[ 2 ] ) )