## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( # eval = FALSE, collapse = TRUE, comment = "#>", fig.width=8, fig.height=5, fig.align = "center" ) ## ----setup-------------------------------------------------------------------- library(Morphoscape) ## ----------------------------------------------------------------------------- data("turtles") data("warps") str(turtles) str(warps) ## ----------------------------------------------------------------------------- library(Morphoscape) data("turtles") data("warps") str(turtles) str(warps) # Create an fnc_df object for downstream use warps_fnc <- as_fnc_df(warps, func.names = c("hydro", "curve", "mech", "fea")) str(warps_fnc) ## ----------------------------------------------------------------------------- # Create alpha-hulled grid for kriging grid <- resample_grid(warps, hull = "concaveman", alpha = 3, plot = TRUE) kr_surf <- krige_surf(warps_fnc, grid = grid) kr_surf plot(kr_surf) ## ----------------------------------------------------------------------------- # Create alpha-hulled grid for kriging grid <- resample_grid(warps, hull = NULL, padding = 1.1) # Do the kriging on the grid kr_surf <- krige_surf(warps_fnc, grid = grid) kr_surf plot(kr_surf) ## ----------------------------------------------------------------------------- # Do kriging on the sample dataset kr_surf <- krige_new_data(kr_surf, new_data = turtles) kr_surf plot(kr_surf) ## ----------------------------------------------------------------------------- # Above steps all in one: kr_surf <- krige_surf(warps_fnc, hull = NULL, padding = 1.1, new_data = turtles) kr_surf plot(kr_surf) ## ----------------------------------------------------------------------------- # Generate weights to search for optimal landscapes weights <- generate_weights(n = 10, nvar = 4) weights <- generate_weights(step = 0.05 , data = kr_surf) ## ----------------------------------------------------------------------------- # Calculate all landscapes; setting verbose = TRUE produces # a progress bar all_landscapes <- calc_all_lscps(kr_surf, grid_weights = weights) ## ----------------------------------------------------------------------------- # Calculate optimal landscapes by Group table(turtles$Ecology) wprime_by_Group <- calcWprimeBy(all_landscapes, by = ~Ecology) wprime_by_Group <- calcWprimeBy(all_landscapes, by = turtles$Ecology) wprime_by_Group summary(wprime_by_Group) plot(wprime_by_Group, ncol = 2) ## ----------------------------------------------------------------------------- # Calculate landscapes for one Group at a time i <- which(turtles$Ecology == "T") wprime_T <- calcGrpWprime(all_landscapes, index = i) wprime_T wprime_b <- calcGrpWprime(all_landscapes, Group == "box turtle") wprime_b plot(wprime_b) wprime_all <- calcGrpWprime(all_landscapes) wprime_all ## ----------------------------------------------------------------------------- # Test for differences between Group landscapes tests <- multi.lands.grp.test(wprime_by_Group) tests # Calculate landscapes for one Group at a time wprime_b <- calcGrpWprime(all_landscapes, Group == "box turtle") wprime_b wprime_t <- calcGrpWprime(all_landscapes, Group == "tortoise") wprime_t # Test for differences between Group landscapes lands.grp.test(wprime_b, wprime_t)